凸二次方博弈的对数域内点法

Bingqi Liu, Dominic Liao-McPherson
{"title":"凸二次方博弈的对数域内点法","authors":"Bingqi Liu, Dominic Liao-McPherson","doi":"arxiv-2403.13290","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an equilibrium-seeking algorithm for finding\ngeneralized Nash equilibria of non-cooperative monotone convex quadratic games.\nSpecifically, we recast the Nash equilibrium-seeking problem as variational\ninequality problem that we solve using a log-domain interior point method and\nprovide a general purpose solver based on this algorithm. This approach is\nsuitable for non-potential, general sum games and does not require extensive\nstructural assumptions. We demonstrate the efficiency and versatility of our\nmethod using three benchmark games and demonstrate our algorithm is especially\neffective on small to medium scale problems.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Log-domain Interior Point Method for Convex Quadratic Games\",\"authors\":\"Bingqi Liu, Dominic Liao-McPherson\",\"doi\":\"arxiv-2403.13290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an equilibrium-seeking algorithm for finding\\ngeneralized Nash equilibria of non-cooperative monotone convex quadratic games.\\nSpecifically, we recast the Nash equilibrium-seeking problem as variational\\ninequality problem that we solve using a log-domain interior point method and\\nprovide a general purpose solver based on this algorithm. This approach is\\nsuitable for non-potential, general sum games and does not require extensive\\nstructural assumptions. We demonstrate the efficiency and versatility of our\\nmethod using three benchmark games and demonstrate our algorithm is especially\\neffective on small to medium scale problems.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种寻找非合作单调凸四元博弈的广义纳什均衡的均衡寻找算法。具体来说,我们将纳什均衡寻找问题重塑为变分质量问题,使用对数域内点法求解,并在此算法的基础上提供了一种通用求解器。这种方法适用于非势能、一般和博弈,而且不需要扩展结构假设。我们用三个基准博弈证明了我们方法的效率和通用性,并证明我们的算法对中小型问题特别有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Log-domain Interior Point Method for Convex Quadratic Games
In this paper, we propose an equilibrium-seeking algorithm for finding generalized Nash equilibria of non-cooperative monotone convex quadratic games. Specifically, we recast the Nash equilibrium-seeking problem as variational inequality problem that we solve using a log-domain interior point method and provide a general purpose solver based on this algorithm. This approach is suitable for non-potential, general sum games and does not require extensive structural assumptions. We demonstrate the efficiency and versatility of our method using three benchmark games and demonstrate our algorithm is especially effective on small to medium scale problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信