用于监控工业批量生产过程的混合无监督学习策略

Christian W. Frey
{"title":"用于监控工业批量生产过程的混合无监督学习策略","authors":"Christian W. Frey","doi":"arxiv-2403.13032","DOIUrl":null,"url":null,"abstract":"Industrial production processes, especially in the pharmaceutical industry,\nare complex systems that require continuous monitoring to ensure efficiency,\nproduct quality, and safety. This paper presents a hybrid unsupervised learning\nstrategy (HULS) for monitoring complex industrial processes. Addressing the\nlimitations of traditional Self-Organizing Maps (SOMs), especially in scenarios\nwith unbalanced data sets and highly correlated process variables, HULS\ncombines existing unsupervised learning techniques to address these challenges.\nTo evaluate the performance of the HULS concept, comparative experiments are\nperformed based on a laboratory batch","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Unsupervised Learning Strategy for Monitoring Industrial Batch Processes\",\"authors\":\"Christian W. Frey\",\"doi\":\"arxiv-2403.13032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial production processes, especially in the pharmaceutical industry,\\nare complex systems that require continuous monitoring to ensure efficiency,\\nproduct quality, and safety. This paper presents a hybrid unsupervised learning\\nstrategy (HULS) for monitoring complex industrial processes. Addressing the\\nlimitations of traditional Self-Organizing Maps (SOMs), especially in scenarios\\nwith unbalanced data sets and highly correlated process variables, HULS\\ncombines existing unsupervised learning techniques to address these challenges.\\nTo evaluate the performance of the HULS concept, comparative experiments are\\nperformed based on a laboratory batch\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业生产过程,尤其是制药业的生产过程是一个复杂的系统,需要持续监控以确保效率、产品质量和安全。本文提出了一种用于监控复杂工业流程的混合无监督学习策略(HULS)。为了解决传统自组织图(SOM)的局限性,尤其是在数据集不平衡和过程变量高度相关的情况下,HULS 结合了现有的无监督学习技术来应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Unsupervised Learning Strategy for Monitoring Industrial Batch Processes
Industrial production processes, especially in the pharmaceutical industry, are complex systems that require continuous monitoring to ensure efficiency, product quality, and safety. This paper presents a hybrid unsupervised learning strategy (HULS) for monitoring complex industrial processes. Addressing the limitations of traditional Self-Organizing Maps (SOMs), especially in scenarios with unbalanced data sets and highly correlated process variables, HULS combines existing unsupervised learning techniques to address these challenges. To evaluate the performance of the HULS concept, comparative experiments are performed based on a laboratory batch
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信