增强标记随机有限集及其在群体目标追踪中的应用

Chaoqun Yang, Mengdie Xu, Xiaowei Liang, Heng Zhang, Xianghui Cao
{"title":"增强标记随机有限集及其在群体目标追踪中的应用","authors":"Chaoqun Yang, Mengdie Xu, Xiaowei Liang, Heng Zhang, Xianghui Cao","doi":"arxiv-2403.13562","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of group target tracking (GTT), wherein\nmultiple closely spaced targets within a group pose a coordinated motion. To\nimprove the tracking performance, the labeled random finite sets (LRFSs) theory\nis adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs,\nwhich introduces group information into the definition of LRFSs. Specifically,\nfor each element in an LRFS, the kinetic states, track label, and the\ncorresponding group information of its represented target are incorporated.\nFurthermore, by means of the labeled multi-Bernoulli (LMB) filter with the\nproposed augmented LRFSs, the group structure is iteratively propagated and\nupdated during the tracking process, which achieves the simultaneously\nestimation of the kinetic states, track label, and the corresponding group\ninformation of multiple group targets, and further improves the GTT tracking\nperformance. Finally, simulation experiments are provided, which well\ndemonstrates the effectiveness of the labeled multi-Bernoulli filter with the\nproposed augmented LRFSs for GTT tracking.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Labeled Random Finite Sets and Its Application to Group Target Tracking\",\"authors\":\"Chaoqun Yang, Mengdie Xu, Xiaowei Liang, Heng Zhang, Xianghui Cao\",\"doi\":\"arxiv-2403.13562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of group target tracking (GTT), wherein\\nmultiple closely spaced targets within a group pose a coordinated motion. To\\nimprove the tracking performance, the labeled random finite sets (LRFSs) theory\\nis adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs,\\nwhich introduces group information into the definition of LRFSs. Specifically,\\nfor each element in an LRFS, the kinetic states, track label, and the\\ncorresponding group information of its represented target are incorporated.\\nFurthermore, by means of the labeled multi-Bernoulli (LMB) filter with the\\nproposed augmented LRFSs, the group structure is iteratively propagated and\\nupdated during the tracking process, which achieves the simultaneously\\nestimation of the kinetic states, track label, and the corresponding group\\ninformation of multiple group targets, and further improves the GTT tracking\\nperformance. Finally, simulation experiments are provided, which well\\ndemonstrates the effectiveness of the labeled multi-Bernoulli filter with the\\nproposed augmented LRFSs for GTT tracking.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.13562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨的是群体目标跟踪(GTT)问题,即群体中多个间隔较近的目标构成协调运动。为了提高跟踪性能,本文采用了标注随机有限集(LRFSs)理论,并开发了一种新的 LRFSs,即增强 LRFSs,在 LRFSs 的定义中引入了群体信息。具体来说,LRFS 中的每个元素都包含了其所代表目标的动力学状态、轨迹标签和相应的组信息。此外,通过标注多伯努利(LMB)滤波器与所提出的增强型 LRFS,组结构在跟踪过程中被迭代传播和更新,从而实现了同时估计多个组目标的动力学状态、轨迹标签和相应的组信息,进一步提高了 GTT 跟踪性能。最后,本文还提供了仿真实验,充分证明了标记多贝努利滤波器与所提出的增强 LRFSs 在 GTT 跟踪中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmented Labeled Random Finite Sets and Its Application to Group Target Tracking
This paper addresses the problem of group target tracking (GTT), wherein multiple closely spaced targets within a group pose a coordinated motion. To improve the tracking performance, the labeled random finite sets (LRFSs) theory is adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs, which introduces group information into the definition of LRFSs. Specifically, for each element in an LRFS, the kinetic states, track label, and the corresponding group information of its represented target are incorporated. Furthermore, by means of the labeled multi-Bernoulli (LMB) filter with the proposed augmented LRFSs, the group structure is iteratively propagated and updated during the tracking process, which achieves the simultaneously estimation of the kinetic states, track label, and the corresponding group information of multiple group targets, and further improves the GTT tracking performance. Finally, simulation experiments are provided, which well demonstrates the effectiveness of the labeled multi-Bernoulli filter with the proposed augmented LRFSs for GTT tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信