域壁模拟:磁动力学方程中的简单波

Pub Date : 2024-03-21 DOI:10.1134/s0965542524010093
L. A. Kalyakin, E. G. Ekomasov
{"title":"域壁模拟:磁动力学方程中的简单波","authors":"L. A. Kalyakin, E. G. Ekomasov","doi":"10.1134/s0965542524010093","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A partial differential equation modeling the motion of a domain wall taking into account external magnetic fields and damping is considered. In the case of constant coefficients, this equation has a set of trivial solutions—equilibria. Solutions in the form of simple (traveling) waves that correspond to a dynamic transition from one equilibrium to another are studied. Possible types of waves that are stable in linear approximation are listed. A method for calculating the velocity of such waves is given.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Domain Walls: Simple Waves in the Magnetodynamics Equation\",\"authors\":\"L. A. Kalyakin, E. G. Ekomasov\",\"doi\":\"10.1134/s0965542524010093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A partial differential equation modeling the motion of a domain wall taking into account external magnetic fields and damping is considered. In the case of constant coefficients, this equation has a set of trivial solutions—equilibria. Solutions in the form of simple (traveling) waves that correspond to a dynamic transition from one equilibrium to another are studied. Possible types of waves that are stable in linear approximation are listed. A method for calculating the velocity of such waves is given.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524010093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524010093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 考虑到外部磁场和阻尼,研究了一个模拟域壁运动的偏微分方程。在系数恒定的情况下,该方程有一组微不足道的解--平衡。研究了与从一个平衡到另一个平衡的动态过渡相对应的简单(行进)波形式的解。列出了在线性近似中稳定的波的可能类型。给出了计算这种波的速度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulation of Domain Walls: Simple Waves in the Magnetodynamics Equation

分享
查看原文
Simulation of Domain Walls: Simple Waves in the Magnetodynamics Equation

Abstract

A partial differential equation modeling the motion of a domain wall taking into account external magnetic fields and damping is considered. In the case of constant coefficients, this equation has a set of trivial solutions—equilibria. Solutions in the form of simple (traveling) waves that correspond to a dynamic transition from one equilibrium to another are studied. Possible types of waves that are stable in linear approximation are listed. A method for calculating the velocity of such waves is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信