气体动力学模拟中高阶逼近线性方案的实际精度

Pub Date : 2024-03-21 DOI:10.1134/s0965542524010044
M. D. Bragin
{"title":"气体动力学模拟中高阶逼近线性方案的实际精度","authors":"M. D. Bragin","doi":"10.1134/s0965542524010044","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new test problem for one-dimensional gas dynamics equations is considered. Initial data in the problem is a periodic smooth wave. Shock waves are formed in the gas flow over a finite time. The convergence under mesh refinement is analyzed for two third-order accurate linear schemes, namely, a bicompact scheme and Rusanov’s scheme. It is demonstrated that both schemes have only the first order of integral convergence in the shock influence area. However, when applied to equations of isentropic gas dynamics, the schemes converge with at least the second order.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations\",\"authors\":\"M. D. Bragin\",\"doi\":\"10.1134/s0965542524010044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new test problem for one-dimensional gas dynamics equations is considered. Initial data in the problem is a periodic smooth wave. Shock waves are formed in the gas flow over a finite time. The convergence under mesh refinement is analyzed for two third-order accurate linear schemes, namely, a bicompact scheme and Rusanov’s scheme. It is demonstrated that both schemes have only the first order of integral convergence in the shock influence area. However, when applied to equations of isentropic gas dynamics, the schemes converge with at least the second order.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524010044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524010044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 考虑了一维气体动力学方程的新测试问题。问题的初始数据为周期性平滑波。气体流在有限时间内形成冲击波。分析了两种三阶精确线性方案(即双紧凑方案和 Rusanov 方案)在网格细化条件下的收敛性。结果表明,这两种方案在冲击影响区都只有一阶积分收敛。然而,当应用于等熵气体动力学方程时,这两种方案至少具有二阶收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations

分享
查看原文
Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations

Abstract

A new test problem for one-dimensional gas dynamics equations is considered. Initial data in the problem is a periodic smooth wave. Shock waves are formed in the gas flow over a finite time. The convergence under mesh refinement is analyzed for two third-order accurate linear schemes, namely, a bicompact scheme and Rusanov’s scheme. It is demonstrated that both schemes have only the first order of integral convergence in the shock influence area. However, when applied to equations of isentropic gas dynamics, the schemes converge with at least the second order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信