集成大型太阳能光伏发电站和风力发电站的电力系统的多参数分岔分析

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdelaziz Salah Saidi, Muneer Parayangat, Mohamed Ali Rakrouki, Saad M. Saad, Naser El Naily
{"title":"集成大型太阳能光伏发电站和风力发电站的电力系统的多参数分岔分析","authors":"Abdelaziz Salah Saidi, Muneer Parayangat, Mohamed Ali Rakrouki, Saad M. Saad, Naser El Naily","doi":"10.1142/s0218127424500299","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel codimension-three-parameter bifurcation analysis of equilibria and limit cycles when integrating Renewable Energy Sources (RESs) power plants with an exponential static load model. The study investigates the effect of solar photovoltaic generation margin, wind power generation margin, and loading factor on the local bifurcation of the modified IEEE nine-bus system. The proposed technique considers the real case of the West System Coordination Council (WSCC), the western states of the USA, by using specific models of RES power plants and static loads. The proposed technique helps to create a set of linearly varying parameters for critical operating points of nonlinear systems. The study explores detailed voltage stability analysis through the examination of bifurcation diagrams. The Hopf, limit-induced, and saddle-node bifurcation branches are identified, defining the parameter space’s stable and unstable operational regions. Additionally, the stability regions surrounding the equilibrium points are diligently explored, clarifying the consequences that various bifurcations may exert on these regions. The study offered in this proposed work aids in determining the best ways to monitor and improve these margins while considering system variables and load design.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiparameter Bifurcation Analysis of Power Systems Integrating Large-Scale Solar Photovoltaic and Wind Farms Power Plants\",\"authors\":\"Abdelaziz Salah Saidi, Muneer Parayangat, Mohamed Ali Rakrouki, Saad M. Saad, Naser El Naily\",\"doi\":\"10.1142/s0218127424500299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a novel codimension-three-parameter bifurcation analysis of equilibria and limit cycles when integrating Renewable Energy Sources (RESs) power plants with an exponential static load model. The study investigates the effect of solar photovoltaic generation margin, wind power generation margin, and loading factor on the local bifurcation of the modified IEEE nine-bus system. The proposed technique considers the real case of the West System Coordination Council (WSCC), the western states of the USA, by using specific models of RES power plants and static loads. The proposed technique helps to create a set of linearly varying parameters for critical operating points of nonlinear systems. The study explores detailed voltage stability analysis through the examination of bifurcation diagrams. The Hopf, limit-induced, and saddle-node bifurcation branches are identified, defining the parameter space’s stable and unstable operational regions. Additionally, the stability regions surrounding the equilibrium points are diligently explored, clarifying the consequences that various bifurcations may exert on these regions. The study offered in this proposed work aids in determining the best ways to monitor and improve these margins while considering system variables and load design.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500299\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的三参数分岔分析方法,用于分析可再生能源(RES)发电厂与指数静态负载模型整合时的平衡和极限循环。研究探讨了太阳能光伏发电裕量、风力发电裕量和负载系数对修改后的 IEEE 九总线系统局部分岔的影响。所提技术考虑了美国西部各州西部系统协调委员会(WSCC)的实际情况,使用了可再生能源发电厂和静态负载的特定模型。所提出的技术有助于为非线性系统的关键运行点创建一组线性变化参数。该研究通过对分岔图的研究,探索了详细的电压稳定性分析。研究确定了霍普夫分岔、极限诱导分岔和鞍节点分岔分支,定义了参数空间的稳定和不稳定运行区域。此外,还对平衡点周围的稳定区域进行了深入探讨,明确了各种分岔对这些区域可能产生的影响。这项研究有助于在考虑系统变量和负载设计的同时,确定监控和改善这些裕度的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiparameter Bifurcation Analysis of Power Systems Integrating Large-Scale Solar Photovoltaic and Wind Farms Power Plants

In this paper, we propose a novel codimension-three-parameter bifurcation analysis of equilibria and limit cycles when integrating Renewable Energy Sources (RESs) power plants with an exponential static load model. The study investigates the effect of solar photovoltaic generation margin, wind power generation margin, and loading factor on the local bifurcation of the modified IEEE nine-bus system. The proposed technique considers the real case of the West System Coordination Council (WSCC), the western states of the USA, by using specific models of RES power plants and static loads. The proposed technique helps to create a set of linearly varying parameters for critical operating points of nonlinear systems. The study explores detailed voltage stability analysis through the examination of bifurcation diagrams. The Hopf, limit-induced, and saddle-node bifurcation branches are identified, defining the parameter space’s stable and unstable operational regions. Additionally, the stability regions surrounding the equilibrium points are diligently explored, clarifying the consequences that various bifurcations may exert on these regions. The study offered in this proposed work aids in determining the best ways to monitor and improve these margins while considering system variables and load design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信