M. R. D. Rodrigues, A. Bonasera, M. Scisciò, J. A. Pérez-Hernández, M. Ehret, F. Filippi, P. L. Andreoli, M. Huault, H. Larreur, D. Singappuli, D. Molloy, D. Raffestin, M. Alonzo, G. G. Rapisarda, D. Lattuada, G. L. Guardo, C. Verona, Fe. Consoli, G. Petringa, A. McNamee, M. La Cognata, S. Palmerini, T. Carriere, M. Cipriani, G. Di Giorgio, G. Cristofari, R. De Angelis, G. A. P. Cirrone, D. Margarone, L. Giuffrida, D. Batani, P. Nicolai, K. Batani, R. Lera, L. Volpe, D. Giulietti, S. Agarwal, M. Krupka, S. Singh, Fa. Consoli
{"title":"利用激光生产放射性同位素:从基础科学到应用","authors":"M. R. D. Rodrigues, A. Bonasera, M. Scisciò, J. A. Pérez-Hernández, M. Ehret, F. Filippi, P. L. Andreoli, M. Huault, H. Larreur, D. Singappuli, D. Molloy, D. Raffestin, M. Alonzo, G. G. Rapisarda, D. Lattuada, G. L. Guardo, C. Verona, Fe. Consoli, G. Petringa, A. McNamee, M. La Cognata, S. Palmerini, T. Carriere, M. Cipriani, G. Di Giorgio, G. Cristofari, R. De Angelis, G. A. P. Cirrone, D. Margarone, L. Giuffrida, D. Batani, P. Nicolai, K. Batani, R. Lera, L. Volpe, D. Giulietti, S. Agarwal, M. Krupka, S. Singh, Fa. Consoli","doi":"10.1063/5.0196909","DOIUrl":null,"url":null,"abstract":"The discovery of chirped pulse amplification has led to great improvements in laser technology, enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers. Protons with energies of tens of MeV can be accelerated using, for instance, target normal sheath acceleration and focused on secondary targets. Under such conditions, nuclear reactions can occur, with the production of radioisotopes suitable for medical application. The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators. In this paper, we study the production of 67Cu, 63Zn, 18F, and 11C, which are currently used in positron emission tomography and other applications. At the same time, we study the reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga to put further constraints on the proton distributions at different angles, as well as the reaction 11B(p,α)8Be relevant for energy production. The experiment was performed at the 1 PW laser facility at Vega III in Salamanca, Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a high purity germanium detector. Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera [Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011)].","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"133 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radioisotope production using lasers: From basic science to applications\",\"authors\":\"M. R. D. Rodrigues, A. Bonasera, M. Scisciò, J. A. Pérez-Hernández, M. Ehret, F. Filippi, P. L. Andreoli, M. Huault, H. Larreur, D. Singappuli, D. Molloy, D. Raffestin, M. Alonzo, G. G. Rapisarda, D. Lattuada, G. L. Guardo, C. Verona, Fe. Consoli, G. Petringa, A. McNamee, M. La Cognata, S. Palmerini, T. Carriere, M. Cipriani, G. Di Giorgio, G. Cristofari, R. De Angelis, G. A. P. Cirrone, D. Margarone, L. Giuffrida, D. Batani, P. Nicolai, K. Batani, R. Lera, L. Volpe, D. Giulietti, S. Agarwal, M. Krupka, S. Singh, Fa. Consoli\",\"doi\":\"10.1063/5.0196909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of chirped pulse amplification has led to great improvements in laser technology, enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers. Protons with energies of tens of MeV can be accelerated using, for instance, target normal sheath acceleration and focused on secondary targets. Under such conditions, nuclear reactions can occur, with the production of radioisotopes suitable for medical application. The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators. In this paper, we study the production of 67Cu, 63Zn, 18F, and 11C, which are currently used in positron emission tomography and other applications. At the same time, we study the reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga to put further constraints on the proton distributions at different angles, as well as the reaction 11B(p,α)8Be relevant for energy production. The experiment was performed at the 1 PW laser facility at Vega III in Salamanca, Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a high purity germanium detector. Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera [Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011)].\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0196909\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0196909","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Radioisotope production using lasers: From basic science to applications
The discovery of chirped pulse amplification has led to great improvements in laser technology, enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers. Protons with energies of tens of MeV can be accelerated using, for instance, target normal sheath acceleration and focused on secondary targets. Under such conditions, nuclear reactions can occur, with the production of radioisotopes suitable for medical application. The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators. In this paper, we study the production of 67Cu, 63Zn, 18F, and 11C, which are currently used in positron emission tomography and other applications. At the same time, we study the reactions 10B(p,α)7Be and 70Zn(p,4n)67Ga to put further constraints on the proton distributions at different angles, as well as the reaction 11B(p,α)8Be relevant for energy production. The experiment was performed at the 1 PW laser facility at Vega III in Salamanca, Spain. Angular distributions of radioisotopes in the forward (with respect to the laser direction) and backward directions were measured using a high purity germanium detector. Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera [Nucl. Instrum. Methods Phys. Res., Sect. A 637, 164–170 (2011)].
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.