提高指数收敛四则运算的精度

Pub Date : 2024-03-21 DOI:10.1134/s0965542524010020
A. A. Belov, V. S. Khokhlachev
{"title":"提高指数收敛四则运算的精度","authors":"A. A. Belov, V. S. Khokhlachev","doi":"10.1134/s0965542524010020","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Evaluation of one-dimensional integrals arises in many problems in physics and technology. This is most often done using simple quadratures of midpoints, trapezoids and Simpson on a uniform grid. For integrals of periodic functions over the full period, the convergence of these quadratures drastically accelerates and depends on the number of grid steps according to an exponential law. In this paper, new asymptotically accurate estimates of the error of such quadratures are obtained. They take into account the location and multiplicity of the poles of the integrand in the complex plane. A generalization of these estimates is constructed for the case when there is no a priori information about the poles of the integrand. An error extrapolation procedure is described that drastically accelerates the convergence of quadratures.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Accuracy of Exponentially Converging Quadratures\",\"authors\":\"A. A. Belov, V. S. Khokhlachev\",\"doi\":\"10.1134/s0965542524010020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Evaluation of one-dimensional integrals arises in many problems in physics and technology. This is most often done using simple quadratures of midpoints, trapezoids and Simpson on a uniform grid. For integrals of periodic functions over the full period, the convergence of these quadratures drastically accelerates and depends on the number of grid steps according to an exponential law. In this paper, new asymptotically accurate estimates of the error of such quadratures are obtained. They take into account the location and multiplicity of the poles of the integrand in the complex plane. A generalization of these estimates is constructed for the case when there is no a priori information about the poles of the integrand. An error extrapolation procedure is described that drastically accelerates the convergence of quadratures.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524010020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在物理和技术领域的许多问题中都会出现一元积分的评估。最常用的方法是在均匀网格上对中点、梯形和辛普森进行简单的二次求和。对于周期函数的全周期积分,这些二次函数的收敛速度会急剧加快,并根据指数规律取决于网格步数。本文获得了此类二次函数误差的新的渐进精确估计值。它们考虑到了复平面上积分的极点位置和多重性。针对没有积分极点先验信息的情况,对这些估计值进行了概括。此外,还介绍了一种误差外推法,它能大大加快二次方程的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving the Accuracy of Exponentially Converging Quadratures

分享
查看原文
Improving the Accuracy of Exponentially Converging Quadratures

Abstract

Evaluation of one-dimensional integrals arises in many problems in physics and technology. This is most often done using simple quadratures of midpoints, trapezoids and Simpson on a uniform grid. For integrals of periodic functions over the full period, the convergence of these quadratures drastically accelerates and depends on the number of grid steps according to an exponential law. In this paper, new asymptotically accurate estimates of the error of such quadratures are obtained. They take into account the location and multiplicity of the poles of the integrand in the complex plane. A generalization of these estimates is constructed for the case when there is no a priori information about the poles of the integrand. An error extrapolation procedure is described that drastically accelerates the convergence of quadratures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信