自发荧光是神经干细胞活化状态的生物标记。

Cell stem cell Pub Date : 2024-04-04 Epub Date: 2024-03-22 DOI:10.1016/j.stem.2024.02.011
Christopher S Morrow, Kelsey Tweed, Sabina Farhadova, Alex J Walsh, Bo P Lear, Avtar Roopra, Ryan D Risgaard, Payton C Klosa, Zachary P Arndt, Ella R Peterson, Michelle M Chi, Allison G Harris, Melissa C Skala, Darcie L Moore
{"title":"自发荧光是神经干细胞活化状态的生物标记。","authors":"Christopher S Morrow, Kelsey Tweed, Sabina Farhadova, Alex J Walsh, Bo P Lear, Avtar Roopra, Ryan D Risgaard, Payton C Klosa, Zachary P Arndt, Ella R Peterson, Michelle M Chi, Allison G Harris, Melissa C Skala, Darcie L Moore","doi":"10.1016/j.stem.2024.02.011","DOIUrl":null,"url":null,"abstract":"<p><p>Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"570-581.e7"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autofluorescence is a biomarker of neural stem cell activation state.\",\"authors\":\"Christopher S Morrow, Kelsey Tweed, Sabina Farhadova, Alex J Walsh, Bo P Lear, Avtar Roopra, Ryan D Risgaard, Payton C Klosa, Zachary P Arndt, Ella R Peterson, Michelle M Chi, Allison G Harris, Melissa C Skala, Darcie L Moore\",\"doi\":\"10.1016/j.stem.2024.02.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.</p>\",\"PeriodicalId\":93928,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\" \",\"pages\":\"570-581.e7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.02.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.02.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经干细胞(NSC)必须退出静止期才能产生神经元;然而,我们对这一过程的了解仍然受到现有技术的限制。自发荧光代谢辅因子的荧光寿命成像(FLIM)已被用于其他细胞类型,以研究细胞状态在代谢重塑驱动下的转变,代谢重塑改变了这些内源性荧光团的光学特性。利用这种非破坏性、活细胞和无标记的策略,我们发现静止的 NSCs(qNSCs)和活化的 NSCs(aNSCs)具有独特的自发荧光特征。具体来说,qNSCs 的自发荧光富集于溶酶体亚群,可作为 NSC 静止的分级标记,以单细胞分辨率预测细胞行为。将自发荧光成像与单细胞 RNA 测序结合起来,我们提供了揭示与深度静止和快速 NSC 激活相关的转录特征的资源。我们共同描述了一种跟踪小鼠 NSC 激活状态的方法,并拓展了我们对成体神经发生的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autofluorescence is a biomarker of neural stem cell activation state.

Autofluorescence is a biomarker of neural stem cell activation state.

Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信