Sandra L Hernández-Ojeda, Javier Jesús Espinosa-Aguirre, Rafael Camacho-Carranza, Jessica Amacosta-Castillo, Ricardo Cárdenas-Ávila
{"title":"胡椒乙醇提取物对食源性芳香胺具有强效抗突变作用。作用机制和化学成分。","authors":"Sandra L Hernández-Ojeda, Javier Jesús Espinosa-Aguirre, Rafael Camacho-Carranza, Jessica Amacosta-Castillo, Ricardo Cárdenas-Ávila","doi":"10.1093/mutage/geae011","DOIUrl":null,"url":null,"abstract":"<p><p>An ethanol extract of Piper auritum leaves (PAEE) inhibits the mutagenic effect of three food-borne aromatic amines (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)) in the TA98 Salmonella typhimurium strain. Preincubation with MeIQx demonstrated in mutagenesis experiments that inhibition of Cytochrome P450 (CYP), as well as direct interaction between component(s) of the plant extract with mutagens, might account for the antimutagenic observed effect. Gas chromatography/mass spectrometry analysis revealed that safrole (50.7%), α-copaene (7.7%), caryophyllene (7.2%), β-pinene (4.2%), γ-terpinene (4.1%), and pentadecane (4.1%) as the main components (PAEE). Piper extract and safrole were able to inhibit the rat liver microsomal CYP1A1 activity that participates in the amines metabolism, leading to the formation of the ultimate mutagenic/ molecules. According to this, safrole and PAEE-inhibited MeIQx mutagenicity but not that of the direct mutagen 2-nitrofluorene. No mutagenicity of plant extract or safrole was detected. This study shows that PAEE and its main component safrole are associated with the inhibition of heterocyclic amines activation due in part to the inhibition of CYP1A subfamily activity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Piper auritum ethanol extract is a potent antimutagen against food-borne aromatic amines: mechanisms of action and chemical composition.\",\"authors\":\"Sandra L Hernández-Ojeda, Javier Jesús Espinosa-Aguirre, Rafael Camacho-Carranza, Jessica Amacosta-Castillo, Ricardo Cárdenas-Ávila\",\"doi\":\"10.1093/mutage/geae011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An ethanol extract of Piper auritum leaves (PAEE) inhibits the mutagenic effect of three food-borne aromatic amines (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)) in the TA98 Salmonella typhimurium strain. Preincubation with MeIQx demonstrated in mutagenesis experiments that inhibition of Cytochrome P450 (CYP), as well as direct interaction between component(s) of the plant extract with mutagens, might account for the antimutagenic observed effect. Gas chromatography/mass spectrometry analysis revealed that safrole (50.7%), α-copaene (7.7%), caryophyllene (7.2%), β-pinene (4.2%), γ-terpinene (4.1%), and pentadecane (4.1%) as the main components (PAEE). Piper extract and safrole were able to inhibit the rat liver microsomal CYP1A1 activity that participates in the amines metabolism, leading to the formation of the ultimate mutagenic/ molecules. According to this, safrole and PAEE-inhibited MeIQx mutagenicity but not that of the direct mutagen 2-nitrofluorene. No mutagenicity of plant extract or safrole was detected. This study shows that PAEE and its main component safrole are associated with the inhibition of heterocyclic amines activation due in part to the inhibition of CYP1A subfamily activity.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/mutage/geae011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mutage/geae011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Piper auritum ethanol extract is a potent antimutagen against food-borne aromatic amines: mechanisms of action and chemical composition.
An ethanol extract of Piper auritum leaves (PAEE) inhibits the mutagenic effect of three food-borne aromatic amines (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)) in the TA98 Salmonella typhimurium strain. Preincubation with MeIQx demonstrated in mutagenesis experiments that inhibition of Cytochrome P450 (CYP), as well as direct interaction between component(s) of the plant extract with mutagens, might account for the antimutagenic observed effect. Gas chromatography/mass spectrometry analysis revealed that safrole (50.7%), α-copaene (7.7%), caryophyllene (7.2%), β-pinene (4.2%), γ-terpinene (4.1%), and pentadecane (4.1%) as the main components (PAEE). Piper extract and safrole were able to inhibit the rat liver microsomal CYP1A1 activity that participates in the amines metabolism, leading to the formation of the ultimate mutagenic/ molecules. According to this, safrole and PAEE-inhibited MeIQx mutagenicity but not that of the direct mutagen 2-nitrofluorene. No mutagenicity of plant extract or safrole was detected. This study shows that PAEE and its main component safrole are associated with the inhibition of heterocyclic amines activation due in part to the inhibition of CYP1A subfamily activity.