Nooshin K. Dashti , Casey P. Schukow , Scott E. Kilpatrick
{"title":"回到未来!具有共同基因改变但形态和免疫组化表型不同的部分骨和软组织肿瘤。","authors":"Nooshin K. Dashti , Casey P. Schukow , Scott E. Kilpatrick","doi":"10.1016/j.humpath.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Bone and soft tissue tumors (BST) are a highly heterogeneous group largely classified by their line of differentiation, based on their resemblance to their normal counterpart in adult tissue. Yet, rendering a specific diagnosis can be challenging, primarily due to their rarity and overlapping histopathologic features or clinical presentations. Over the past few decades, seemingly histogenetic-specific gene fusions/translocations and amplifications have been discovered, aiding in a more nuanced classification, leading to well-established objective diagnostic criteria and the development of specific surrogate ancillary tests targeting these genetic aberrations (e.g., immunohistochemistry). Ironically, the same research also has revealed that some specific tumor subtypes may be the result of differing and often multiple gene fusions/translocations, but, more interestingly, identical gene fusions may be present in more than one phenotypically and biologically distinct neoplasm, sometimes with entirely different clinical behavior. Prime examples include, <em>EWSR1::ATF1</em> and, less commonly, <em>EWSR1::CREB1</em> gene fusions present in both clear cell sarcoma, a malignant high-grade tumor with melanocytic differentiation, and angiomatoid fibrous histiocytoma, a mesenchymal neoplasm of intermediate malignancy with a generally indolent course. Similarly, <em>MDM2</em> amplification, once deemed to be pathognomonic for atypical lipomatous tumor/well differentiated and dedifferentiated liposarcoma, has been documented in a range of additional distinct tumors, including low grade osteosarcomas (e.g. low grade central and surface parosteal) and high-grade intimal sarcomas, amongst others. Such findings reinforce the importance of careful attention to morphological and clinicoradiological features and correlation with molecular testing before rendering a specific diagnosis. Future classification systems in BST neoplasms cannot be solely based on molecular events and ideally will balance morphologic features with molecular analysis. Herein, we provide a narrative literature review of the more common BST neoplasms with shared genetic events but differing demographics, morphology, immunophenotype, and clinical behavior, re-emphasizing the importance of the hematoxylin and eosin slide and the “eye” of the practicing pathologist.</p></div>","PeriodicalId":13062,"journal":{"name":"Human pathology","volume":"147 ","pages":"Pages 129-138"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back to the future! Selected bone and soft tissue neoplasms with shared genetic alterations but differing morphological and immunohistochemical phenotypes\",\"authors\":\"Nooshin K. Dashti , Casey P. Schukow , Scott E. Kilpatrick\",\"doi\":\"10.1016/j.humpath.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone and soft tissue tumors (BST) are a highly heterogeneous group largely classified by their line of differentiation, based on their resemblance to their normal counterpart in adult tissue. Yet, rendering a specific diagnosis can be challenging, primarily due to their rarity and overlapping histopathologic features or clinical presentations. Over the past few decades, seemingly histogenetic-specific gene fusions/translocations and amplifications have been discovered, aiding in a more nuanced classification, leading to well-established objective diagnostic criteria and the development of specific surrogate ancillary tests targeting these genetic aberrations (e.g., immunohistochemistry). Ironically, the same research also has revealed that some specific tumor subtypes may be the result of differing and often multiple gene fusions/translocations, but, more interestingly, identical gene fusions may be present in more than one phenotypically and biologically distinct neoplasm, sometimes with entirely different clinical behavior. Prime examples include, <em>EWSR1::ATF1</em> and, less commonly, <em>EWSR1::CREB1</em> gene fusions present in both clear cell sarcoma, a malignant high-grade tumor with melanocytic differentiation, and angiomatoid fibrous histiocytoma, a mesenchymal neoplasm of intermediate malignancy with a generally indolent course. Similarly, <em>MDM2</em> amplification, once deemed to be pathognomonic for atypical lipomatous tumor/well differentiated and dedifferentiated liposarcoma, has been documented in a range of additional distinct tumors, including low grade osteosarcomas (e.g. low grade central and surface parosteal) and high-grade intimal sarcomas, amongst others. Such findings reinforce the importance of careful attention to morphological and clinicoradiological features and correlation with molecular testing before rendering a specific diagnosis. Future classification systems in BST neoplasms cannot be solely based on molecular events and ideally will balance morphologic features with molecular analysis. Herein, we provide a narrative literature review of the more common BST neoplasms with shared genetic events but differing demographics, morphology, immunophenotype, and clinical behavior, re-emphasizing the importance of the hematoxylin and eosin slide and the “eye” of the practicing pathologist.</p></div>\",\"PeriodicalId\":13062,\"journal\":{\"name\":\"Human pathology\",\"volume\":\"147 \",\"pages\":\"Pages 129-138\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0046817724000509\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0046817724000509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Back to the future! Selected bone and soft tissue neoplasms with shared genetic alterations but differing morphological and immunohistochemical phenotypes
Bone and soft tissue tumors (BST) are a highly heterogeneous group largely classified by their line of differentiation, based on their resemblance to their normal counterpart in adult tissue. Yet, rendering a specific diagnosis can be challenging, primarily due to their rarity and overlapping histopathologic features or clinical presentations. Over the past few decades, seemingly histogenetic-specific gene fusions/translocations and amplifications have been discovered, aiding in a more nuanced classification, leading to well-established objective diagnostic criteria and the development of specific surrogate ancillary tests targeting these genetic aberrations (e.g., immunohistochemistry). Ironically, the same research also has revealed that some specific tumor subtypes may be the result of differing and often multiple gene fusions/translocations, but, more interestingly, identical gene fusions may be present in more than one phenotypically and biologically distinct neoplasm, sometimes with entirely different clinical behavior. Prime examples include, EWSR1::ATF1 and, less commonly, EWSR1::CREB1 gene fusions present in both clear cell sarcoma, a malignant high-grade tumor with melanocytic differentiation, and angiomatoid fibrous histiocytoma, a mesenchymal neoplasm of intermediate malignancy with a generally indolent course. Similarly, MDM2 amplification, once deemed to be pathognomonic for atypical lipomatous tumor/well differentiated and dedifferentiated liposarcoma, has been documented in a range of additional distinct tumors, including low grade osteosarcomas (e.g. low grade central and surface parosteal) and high-grade intimal sarcomas, amongst others. Such findings reinforce the importance of careful attention to morphological and clinicoradiological features and correlation with molecular testing before rendering a specific diagnosis. Future classification systems in BST neoplasms cannot be solely based on molecular events and ideally will balance morphologic features with molecular analysis. Herein, we provide a narrative literature review of the more common BST neoplasms with shared genetic events but differing demographics, morphology, immunophenotype, and clinical behavior, re-emphasizing the importance of the hematoxylin and eosin slide and the “eye” of the practicing pathologist.
期刊介绍:
Human Pathology is designed to bring information of clinicopathologic significance to human disease to the laboratory and clinical physician. It presents information drawn from morphologic and clinical laboratory studies with direct relevance to the understanding of human diseases. Papers published concern morphologic and clinicopathologic observations, reviews of diseases, analyses of problems in pathology, significant collections of case material and advances in concepts or techniques of value in the analysis and diagnosis of disease. Theoretical and experimental pathology and molecular biology pertinent to human disease are included. This critical journal is well illustrated with exceptional reproductions of photomicrographs and microscopic anatomy.