{"title":"气垫鞋的功能评估以及根据体重组确定最佳厚度的方法","authors":"Seungnam Min , Murali Subramaniyam , Heeran Lee","doi":"10.1016/j.ergon.2024.103582","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the effectiveness of four air insoles with varying thicknesses and one typical insole by measuring the total muscle activity, total muscle fatigue, left/right foot pressure symmetry ratio, and subjective fatigue among participants in three weight groups (<50, 50–70, and >70 kg). To minimize cumulative fatigue among participants, only one type of insole was tested per day. The 0.6- to 1.0-cm thick air insoles have a positive impact on muscle activity, muscle fatigue, and subjective fatigue compared to the typical 0.8-cm insoles. In terms of subjective fatigue, the 0.6-, 1.0-, and 1.2-cm air insoles yielded lower fatigue levels in the <50 kg group; however, the 50–70 kg group exhibited the lowest fatigue level when wearing the 0.8-cm air insoles. The proposed methodology may provide reference for optimal air insole thickness for users of varying weight ranges.</p></div>","PeriodicalId":50317,"journal":{"name":"International Journal of Industrial Ergonomics","volume":"101 ","pages":"Article 103582"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional evaluation of air insoles and methodology for determining the optimal thickness according to weight group\",\"authors\":\"Seungnam Min , Murali Subramaniyam , Heeran Lee\",\"doi\":\"10.1016/j.ergon.2024.103582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the effectiveness of four air insoles with varying thicknesses and one typical insole by measuring the total muscle activity, total muscle fatigue, left/right foot pressure symmetry ratio, and subjective fatigue among participants in three weight groups (<50, 50–70, and >70 kg). To minimize cumulative fatigue among participants, only one type of insole was tested per day. The 0.6- to 1.0-cm thick air insoles have a positive impact on muscle activity, muscle fatigue, and subjective fatigue compared to the typical 0.8-cm insoles. In terms of subjective fatigue, the 0.6-, 1.0-, and 1.2-cm air insoles yielded lower fatigue levels in the <50 kg group; however, the 50–70 kg group exhibited the lowest fatigue level when wearing the 0.8-cm air insoles. The proposed methodology may provide reference for optimal air insole thickness for users of varying weight ranges.</p></div>\",\"PeriodicalId\":50317,\"journal\":{\"name\":\"International Journal of Industrial Ergonomics\",\"volume\":\"101 \",\"pages\":\"Article 103582\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169814124000386\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169814124000386","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Functional evaluation of air insoles and methodology for determining the optimal thickness according to weight group
This study evaluates the effectiveness of four air insoles with varying thicknesses and one typical insole by measuring the total muscle activity, total muscle fatigue, left/right foot pressure symmetry ratio, and subjective fatigue among participants in three weight groups (<50, 50–70, and >70 kg). To minimize cumulative fatigue among participants, only one type of insole was tested per day. The 0.6- to 1.0-cm thick air insoles have a positive impact on muscle activity, muscle fatigue, and subjective fatigue compared to the typical 0.8-cm insoles. In terms of subjective fatigue, the 0.6-, 1.0-, and 1.2-cm air insoles yielded lower fatigue levels in the <50 kg group; however, the 50–70 kg group exhibited the lowest fatigue level when wearing the 0.8-cm air insoles. The proposed methodology may provide reference for optimal air insole thickness for users of varying weight ranges.
期刊介绍:
The journal publishes original contributions that add to our understanding of the role of humans in today systems and the interactions thereof with various system components. The journal typically covers the following areas: industrial and occupational ergonomics, design of systems, tools and equipment, human performance measurement and modeling, human productivity, humans in technologically complex systems, and safety. The focus of the articles includes basic theoretical advances, applications, case studies, new methodologies and procedures; and empirical studies.