Annabelle Coleman, Mackenzie T Langan, Gaurav Verma, Harry Knights, Aaron Sturrock, Blair R Leavitt, Sarah J Tabrizi, Rachael I Scahill, Nicola Z Hobbs
{"title":"利用核磁共振成像评估亨廷顿氏病白质中的血管周围空间形态。","authors":"Annabelle Coleman, Mackenzie T Langan, Gaurav Verma, Harry Knights, Aaron Sturrock, Blair R Leavitt, Sarah J Tabrizi, Rachael I Scahill, Nicola Z Hobbs","doi":"10.3233/JHD-231508","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are limited reports of enlarged PVS across the grey matter in manifest Huntington's disease (HD). Little is known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have the potential to both contribute to HD pathology and affect the distribution and success of intraparenchymal and intrathecally administered huntingtin-lowering therapies.</p><p><strong>Objective: </strong>To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships between PVS morphometry and disease burden and severity measures were examined.</p><p><strong>Methods: </strong>White matter PVS were segmented on 3T T2 W MRI brain scans of 33 healthy controls, 30 premanifest HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-HD study. PVS count and total PVS volume were measured.</p><p><strong>Results: </strong>PVS total count slightly increased in pre-HD (p = 0.004), and early-HD groups (p = 0.005), compared to healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD compared to healthy controls (p = 0.044), but not in early-HD. No associations between PVS measures and HD disease burden or severity were found.</p><p><strong>Conclusions: </strong>This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD and early-HD. Subtle morphometric abnormalities are implied but require confirmation in a larger cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its potential impact on future treatments, with a focus on subcortical grey matter, is warranted.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Perivascular Space Morphometry Across the White Matter in Huntington's Disease Using MRI.\",\"authors\":\"Annabelle Coleman, Mackenzie T Langan, Gaurav Verma, Harry Knights, Aaron Sturrock, Blair R Leavitt, Sarah J Tabrizi, Rachael I Scahill, Nicola Z Hobbs\",\"doi\":\"10.3233/JHD-231508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are limited reports of enlarged PVS across the grey matter in manifest Huntington's disease (HD). Little is known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have the potential to both contribute to HD pathology and affect the distribution and success of intraparenchymal and intrathecally administered huntingtin-lowering therapies.</p><p><strong>Objective: </strong>To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships between PVS morphometry and disease burden and severity measures were examined.</p><p><strong>Methods: </strong>White matter PVS were segmented on 3T T2 W MRI brain scans of 33 healthy controls, 30 premanifest HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-HD study. PVS count and total PVS volume were measured.</p><p><strong>Results: </strong>PVS total count slightly increased in pre-HD (p = 0.004), and early-HD groups (p = 0.005), compared to healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD compared to healthy controls (p = 0.044), but not in early-HD. No associations between PVS measures and HD disease burden or severity were found.</p><p><strong>Conclusions: </strong>This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD and early-HD. Subtle morphometric abnormalities are implied but require confirmation in a larger cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its potential impact on future treatments, with a focus on subcortical grey matter, is warranted.</p>\",\"PeriodicalId\":16042,\"journal\":{\"name\":\"Journal of Huntington's disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Huntington's disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHD-231508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Huntington's disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHD-231508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Assessment of Perivascular Space Morphometry Across the White Matter in Huntington's Disease Using MRI.
Background: Perivascular spaces (PVS) are fluid-filled cavities surrounding small cerebral blood vessels. There are limited reports of enlarged PVS across the grey matter in manifest Huntington's disease (HD). Little is known about how PVS morphometry in the white matter may contribute to HD. Enlarged PVS have the potential to both contribute to HD pathology and affect the distribution and success of intraparenchymal and intrathecally administered huntingtin-lowering therapies.
Objective: To investigate PVS morphometry in the global white matter across the spectrum of HD. Relationships between PVS morphometry and disease burden and severity measures were examined.
Methods: White matter PVS were segmented on 3T T2 W MRI brain scans of 33 healthy controls, 30 premanifest HD (pre-HD), and 32 early manifest HD (early-HD) participants from the Vancouver site of the TRACK-HD study. PVS count and total PVS volume were measured.
Results: PVS total count slightly increased in pre-HD (p = 0.004), and early-HD groups (p = 0.005), compared to healthy controls. PVS volume, as a percentage of white matter volume, increased subtly in pre-HD compared to healthy controls (p = 0.044), but not in early-HD. No associations between PVS measures and HD disease burden or severity were found.
Conclusions: This study reveals relatively preserved PVS morphometry across the global white matter of pre-HD and early-HD. Subtle morphometric abnormalities are implied but require confirmation in a larger cohort. However, in conjunction with previous publications, further investigation of PVS in HD and its potential impact on future treatments, with a focus on subcortical grey matter, is warranted.