DMAF-Net:可变形多尺度自适应融合网络,用于利用全景射线照片检测牙科结构。

IF 2.9 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Wei Li, Yuanjun Wang, Yu Liu
{"title":"DMAF-Net:可变形多尺度自适应融合网络,用于利用全景射线照片检测牙科结构。","authors":"Wei Li, Yuanjun Wang, Yu Liu","doi":"10.1093/dmfr/twae014","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems.</p><p><strong>Methods: </strong>We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria.</p><p><strong>Results: </strong>About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively.</p><p><strong>Conclusions: </strong>The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"296-307"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211679/pdf/","citationCount":"0","resultStr":"{\"title\":\"DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs.\",\"authors\":\"Wei Li, Yuanjun Wang, Yu Liu\",\"doi\":\"10.1093/dmfr/twae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems.</p><p><strong>Methods: </strong>We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria.</p><p><strong>Results: </strong>About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively.</p><p><strong>Conclusions: </strong>The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"296-307\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/dmfr/twae014\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twae014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:全景放射摄影是牙科最常用的诊断方式之一。全景放射摄影的自动识别有助于牙医进行决策支持。为了提高全景 X 光片中牙科结构问题检测的准确性,我们改进了 YOLO 网络,并验证了这种新方法在帮助检测牙科问题方面的可行性:方法:我们提出了一种可变形多尺度自适应融合网(DMAF-Net),通过改进 "只看一次"(YOLO)网络来检测全景X光片中的五种牙科情况(阻生牙、缺失牙、种植牙、牙冠修复和根管治疗牙)。在 DMAF-Net 中,我们提出了不同的模块来增强网络的特征提取能力,并获取不同尺度的高级特征,同时利用自适应空间特征融合来解决不同特征层的尺度不匹配问题,从而有效提高了检测性能。为了评价模型的检测性能,我们比较了不同模型在测试集中的实验结果,并通过计算各类不同指标的平均值作为评价标准,选出了最优结果的模型:1474 张全景照片按 7:2:1 的比例分为训练集、验证集和测试集。在测试集中,DMAF-Net 的平均精确度和召回率分别为 92.7% 和 87.6%;平均精确度(mAP0.5 和 mAP [0.5:0.95])分别为 91.8% 和 63.7%:所提出的 DMAF-Net 模型改进了现有的深度学习模型,实现了对全景照片中牙齿结构问题的自动检测。这种新方法在未来新的计算机辅助诊断、教学和临床应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs.

Objectives: Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems.

Methods: We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria.

Results: About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively.

Conclusions: The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
9.10%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging. Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology. The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal. Quick Facts: - 2015 Impact Factor - 1.919 - Receipt to first decision - average of 3 weeks - Acceptance to online publication - average of 3 weeks - Open access option - ISSN: 0250-832X - eISSN: 1476-542X
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信