{"title":"针刺加载复合板失效行为的 Hashin 和 Puck 标准比较 针刺加载复合板失效行为的 Hashin 和 Puck 标准比较","authors":"C. Dogan, M. O. Kaman, S. Erdem, M. Albayrak","doi":"10.1002/mawe.202300104","DOIUrl":null,"url":null,"abstract":"<p>In this study, the failure behavior of carbon fiber-reinforced pin-jointed composite plates were analyzed for different criteria. For this purpose, composite plates with a single and double pin joints were prepared from four layers carbon fiber composites. The effect of pin number, pin position on plate damage load and type was investigated experimentally and numerically under the tensile test. Numerically, progressive damage analysis was performed using Hashin and Puck failure criteria, and the approach rates to the experimental results were determined. It was observed that the experimental results obtained for single pin joint composites and the numerical data obtained using the Puck damage criterion were at least 87 % compatible, and this rate was determined as 85 % for the Hashin failure criterion. For the double pin jointed composites, it was seen that the experimental results and the results of the Puck damage criterion were compatible with at least 90 %, and this rate was obtained as 84 % for the Hashin failure criterion. The dominant damage type seen in the specimen is matrix shear and fiber compression according to the Hashin damage criterion, inter fiber failure in transverse tension for Puck.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 3","pages":"314-329"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Hashin and Puck criterions for failure behavior of pin loaded composite plates\\n Vergleich der Hashin- und Puck-Kriterien für das Versagensverhalten von stiftbelasteten Verbundwerkstoffplatten\",\"authors\":\"C. Dogan, M. O. Kaman, S. Erdem, M. Albayrak\",\"doi\":\"10.1002/mawe.202300104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the failure behavior of carbon fiber-reinforced pin-jointed composite plates were analyzed for different criteria. For this purpose, composite plates with a single and double pin joints were prepared from four layers carbon fiber composites. The effect of pin number, pin position on plate damage load and type was investigated experimentally and numerically under the tensile test. Numerically, progressive damage analysis was performed using Hashin and Puck failure criteria, and the approach rates to the experimental results were determined. It was observed that the experimental results obtained for single pin joint composites and the numerical data obtained using the Puck damage criterion were at least 87 % compatible, and this rate was determined as 85 % for the Hashin failure criterion. For the double pin jointed composites, it was seen that the experimental results and the results of the Puck damage criterion were compatible with at least 90 %, and this rate was obtained as 84 % for the Hashin failure criterion. The dominant damage type seen in the specimen is matrix shear and fiber compression according to the Hashin damage criterion, inter fiber failure in transverse tension for Puck.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 3\",\"pages\":\"314-329\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300104\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300104","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison of Hashin and Puck criterions for failure behavior of pin loaded composite plates
Vergleich der Hashin- und Puck-Kriterien für das Versagensverhalten von stiftbelasteten Verbundwerkstoffplatten
In this study, the failure behavior of carbon fiber-reinforced pin-jointed composite plates were analyzed for different criteria. For this purpose, composite plates with a single and double pin joints were prepared from four layers carbon fiber composites. The effect of pin number, pin position on plate damage load and type was investigated experimentally and numerically under the tensile test. Numerically, progressive damage analysis was performed using Hashin and Puck failure criteria, and the approach rates to the experimental results were determined. It was observed that the experimental results obtained for single pin joint composites and the numerical data obtained using the Puck damage criterion were at least 87 % compatible, and this rate was determined as 85 % for the Hashin failure criterion. For the double pin jointed composites, it was seen that the experimental results and the results of the Puck damage criterion were compatible with at least 90 %, and this rate was obtained as 84 % for the Hashin failure criterion. The dominant damage type seen in the specimen is matrix shear and fiber compression according to the Hashin damage criterion, inter fiber failure in transverse tension for Puck.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.