{"title":"贝叶斯空间聚类信号学习在不良事件(AE)中的应用。","authors":"Hou-Cheng Yang, Guanyu Hu","doi":"10.1080/10543406.2024.2325148","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing interest in understanding geographic patterns of medical device-related adverse events (AEs). A spatial scan method combined with the likelihood ratio test (LRT) for spatial-cluster signal detection over the geographical region is universally used. The spatial scan method used a moving window to scan the entire study region and collected some candidate sub-regions from which the spatial-cluster signal(s) will be found. However, it has some challenges, especially in computation. First, the computational cost increased when the number of sub-regions increased. Second, the computational cost may increase if a large spatial-cluster pattern is present and a flexible-shaped window is used. To reduce the computational cost, we propose a Bayesian nonparametric method that combines the ideas of Markov random field (MRF) to leverage geographical information to find potential signal clusters. Then, the LRT is applied for the detection of spatial cluster signals. The proposed method provides an ability to capture both locally spatially contiguous clusters and globally discontiguous clusters, and is manifested to be effective and tractable using hypothetical Left Ventricular Assist Device (LVAD) data as an illustration.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-13"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian spatial cluster signal learning with application to adverse event (AE).\",\"authors\":\"Hou-Cheng Yang, Guanyu Hu\",\"doi\":\"10.1080/10543406.2024.2325148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is growing interest in understanding geographic patterns of medical device-related adverse events (AEs). A spatial scan method combined with the likelihood ratio test (LRT) for spatial-cluster signal detection over the geographical region is universally used. The spatial scan method used a moving window to scan the entire study region and collected some candidate sub-regions from which the spatial-cluster signal(s) will be found. However, it has some challenges, especially in computation. First, the computational cost increased when the number of sub-regions increased. Second, the computational cost may increase if a large spatial-cluster pattern is present and a flexible-shaped window is used. To reduce the computational cost, we propose a Bayesian nonparametric method that combines the ideas of Markov random field (MRF) to leverage geographical information to find potential signal clusters. Then, the LRT is applied for the detection of spatial cluster signals. The proposed method provides an ability to capture both locally spatially contiguous clusters and globally discontiguous clusters, and is manifested to be effective and tractable using hypothetical Left Ventricular Assist Device (LVAD) data as an illustration.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2325148\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2325148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bayesian spatial cluster signal learning with application to adverse event (AE).
There is growing interest in understanding geographic patterns of medical device-related adverse events (AEs). A spatial scan method combined with the likelihood ratio test (LRT) for spatial-cluster signal detection over the geographical region is universally used. The spatial scan method used a moving window to scan the entire study region and collected some candidate sub-regions from which the spatial-cluster signal(s) will be found. However, it has some challenges, especially in computation. First, the computational cost increased when the number of sub-regions increased. Second, the computational cost may increase if a large spatial-cluster pattern is present and a flexible-shaped window is used. To reduce the computational cost, we propose a Bayesian nonparametric method that combines the ideas of Markov random field (MRF) to leverage geographical information to find potential signal clusters. Then, the LRT is applied for the detection of spatial cluster signals. The proposed method provides an ability to capture both locally spatially contiguous clusters and globally discontiguous clusters, and is manifested to be effective and tractable using hypothetical Left Ventricular Assist Device (LVAD) data as an illustration.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.