分数达芬方程中丰富的解现象学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sara Hamaizia, Salvador Jiménez, M. Pilar Velasco
{"title":"分数达芬方程中丰富的解现象学","authors":"Sara Hamaizia, Salvador Jiménez, M. Pilar Velasco","doi":"10.1007/s13540-024-00269-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we characterize the chaos in the Duffing equation with negative linear stiffness and a fractional damping term given by a Caputo fractional derivative of order <span>\\(\\alpha \\)</span> ranging from 0 to 2. We use two different numerical methods to compute the solutions, one of them new. We discriminate between regular and chaotic solutions by means of the attractor in the phase space and the values of the Lyapunov Characteristic Exponents. For this, we have extended a linear approximation method to this equation. The system is very rich with distinct behaviours. In the limits <span>\\(\\alpha \\)</span> to 0 or <span>\\(\\alpha \\)</span> to 2, the system tends to basically the same undamped system with a behaviour clearly different from the classical Duffing equation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rich phenomenology of the solutions in a fractional Duffing equation\",\"authors\":\"Sara Hamaizia, Salvador Jiménez, M. Pilar Velasco\",\"doi\":\"10.1007/s13540-024-00269-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we characterize the chaos in the Duffing equation with negative linear stiffness and a fractional damping term given by a Caputo fractional derivative of order <span>\\\\(\\\\alpha \\\\)</span> ranging from 0 to 2. We use two different numerical methods to compute the solutions, one of them new. We discriminate between regular and chaotic solutions by means of the attractor in the phase space and the values of the Lyapunov Characteristic Exponents. For this, we have extended a linear approximation method to this equation. The system is very rich with distinct behaviours. In the limits <span>\\\\(\\\\alpha \\\\)</span> to 0 or <span>\\\\(\\\\alpha \\\\)</span> to 2, the system tends to basically the same undamped system with a behaviour clearly different from the classical Duffing equation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00269-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00269-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了具有负线性刚度和分数阻尼项的达芬方程中的混沌,分数阻尼项由阶为 \(\α \) 的卡普托分数导数给出,范围从 0 到 2。我们使用两种不同的数值方法计算解,其中一种是新方法。我们通过相空间中的吸引子和 Lyapunov 特征指数值来区分规则解和混沌解。为此,我们将线性近似法扩展到该方程。该系统具有非常丰富的独特行为。在 \(\α \) 到 0 或 \(\α \) 到 2 的限度内,系统基本上趋向于相同的无阻尼系统,其行为明显不同于经典的达芬方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rich phenomenology of the solutions in a fractional Duffing equation

Rich phenomenology of the solutions in a fractional Duffing equation

In this paper, we characterize the chaos in the Duffing equation with negative linear stiffness and a fractional damping term given by a Caputo fractional derivative of order \(\alpha \) ranging from 0 to 2. We use two different numerical methods to compute the solutions, one of them new. We discriminate between regular and chaotic solutions by means of the attractor in the phase space and the values of the Lyapunov Characteristic Exponents. For this, we have extended a linear approximation method to this equation. The system is very rich with distinct behaviours. In the limits \(\alpha \) to 0 or \(\alpha \) to 2, the system tends to basically the same undamped system with a behaviour clearly different from the classical Duffing equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信