{"title":"SSTU:用于高光谱全切片图像重建的斯温-光谱变换器 U-Net","authors":"Yukun Wang , Yanfeng Gu , Abiyasi Nanding","doi":"10.1016/j.compmedimag.2024.102367","DOIUrl":null,"url":null,"abstract":"<div><p>Whole Slide Imaging and Hyperspectral Microscopic Imaging provide great quality data with high spatial and spectral resolution for histopathology. Existing Hyperspectral Whole Slide Imaging systems combine the advantages of the techniques above, thus providing rich information for pathological diagnosis. However, it cannot avoid the problems of slow acquisition speed and mass data storage demand. Inspired by the spectral reconstruction task in computer vision and remote sensing, the Swin-Spectral Transformer U-Net (SSTU) has been developed to reconstruct Hyperspectral Whole Slide images (HWSis) from multiple Hyperspectral Microscopic images (HMis) of small Field of View and Whole Slide images (WSis). The Swin-Spectral Transformer (SST) module in SSTU takes full advantage of Transformer in extracting global attention. Firstly, Swin Transformer is exploited in space domain, which overcomes the high computation cost in Vision Transformer structures, while it maintains the spatial features extracted from WSis. Furthermore, Spectral Transformer is exploited to collect the long-range spectral features in HMis. Combined with the multi-scale encoder-bottleneck-decoder structure of U-Net, SSTU network is formed by sequential and symmetric residual connections of SSTs, which reconstructs a selected area of HWSi from coarse to fine. Qualitative and quantitative experiments prove the performance of SSTU in HWSi reconstruction task superior to other state-of-the-art spectral reconstruction methods.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"114 ","pages":"Article 102367"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSTU: Swin-Spectral Transformer U-Net for hyperspectral whole slide image reconstruction\",\"authors\":\"Yukun Wang , Yanfeng Gu , Abiyasi Nanding\",\"doi\":\"10.1016/j.compmedimag.2024.102367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Whole Slide Imaging and Hyperspectral Microscopic Imaging provide great quality data with high spatial and spectral resolution for histopathology. Existing Hyperspectral Whole Slide Imaging systems combine the advantages of the techniques above, thus providing rich information for pathological diagnosis. However, it cannot avoid the problems of slow acquisition speed and mass data storage demand. Inspired by the spectral reconstruction task in computer vision and remote sensing, the Swin-Spectral Transformer U-Net (SSTU) has been developed to reconstruct Hyperspectral Whole Slide images (HWSis) from multiple Hyperspectral Microscopic images (HMis) of small Field of View and Whole Slide images (WSis). The Swin-Spectral Transformer (SST) module in SSTU takes full advantage of Transformer in extracting global attention. Firstly, Swin Transformer is exploited in space domain, which overcomes the high computation cost in Vision Transformer structures, while it maintains the spatial features extracted from WSis. Furthermore, Spectral Transformer is exploited to collect the long-range spectral features in HMis. Combined with the multi-scale encoder-bottleneck-decoder structure of U-Net, SSTU network is formed by sequential and symmetric residual connections of SSTs, which reconstructs a selected area of HWSi from coarse to fine. Qualitative and quantitative experiments prove the performance of SSTU in HWSi reconstruction task superior to other state-of-the-art spectral reconstruction methods.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"114 \",\"pages\":\"Article 102367\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000442\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000442","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
SSTU: Swin-Spectral Transformer U-Net for hyperspectral whole slide image reconstruction
Whole Slide Imaging and Hyperspectral Microscopic Imaging provide great quality data with high spatial and spectral resolution for histopathology. Existing Hyperspectral Whole Slide Imaging systems combine the advantages of the techniques above, thus providing rich information for pathological diagnosis. However, it cannot avoid the problems of slow acquisition speed and mass data storage demand. Inspired by the spectral reconstruction task in computer vision and remote sensing, the Swin-Spectral Transformer U-Net (SSTU) has been developed to reconstruct Hyperspectral Whole Slide images (HWSis) from multiple Hyperspectral Microscopic images (HMis) of small Field of View and Whole Slide images (WSis). The Swin-Spectral Transformer (SST) module in SSTU takes full advantage of Transformer in extracting global attention. Firstly, Swin Transformer is exploited in space domain, which overcomes the high computation cost in Vision Transformer structures, while it maintains the spatial features extracted from WSis. Furthermore, Spectral Transformer is exploited to collect the long-range spectral features in HMis. Combined with the multi-scale encoder-bottleneck-decoder structure of U-Net, SSTU network is formed by sequential and symmetric residual connections of SSTs, which reconstructs a selected area of HWSi from coarse to fine. Qualitative and quantitative experiments prove the performance of SSTU in HWSi reconstruction task superior to other state-of-the-art spectral reconstruction methods.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.