超无穷域上多项式环的高等互易律和格伦瓦尔德-王定理类似物

IF 0.6 2区 数学 Q2 LOGIC
Dong Quan Ngoc Nguyen
{"title":"超无穷域上多项式环的高等互易律和格伦瓦尔德-王定理类似物","authors":"Dong Quan Ngoc Nguyen","doi":"10.1016/j.apal.2024.103438","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish an explicit higher reciprocity law for the polynomial ring over a nonprincipal ultraproduct of finite fields. Such an ultraproduct can be taken over the same finite field, which allows to recover the classical higher reciprocity law for the polynomial ring <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span> over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> that is due to Dedekind, Kühne, Artin, and Schmidt. On the other hand, when the ultraproduct is taken over finite fields of unbounded cardinalities, we obtain an explicit higher reciprocity law for the polynomial ring over an infinite field in both characteristics 0 and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> for some prime <em>p</em>. We then use the higher reciprocity law to prove an analogue of the Grunwald–Wang theorem for such a polynomial ring in both characteristics 0 and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> for some prime <em>p</em>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 6","pages":"Article 103438"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher reciprocity law and an analogue of the Grunwald–Wang theorem for the ring of polynomials over an ultra-finite field\",\"authors\":\"Dong Quan Ngoc Nguyen\",\"doi\":\"10.1016/j.apal.2024.103438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish an explicit higher reciprocity law for the polynomial ring over a nonprincipal ultraproduct of finite fields. Such an ultraproduct can be taken over the same finite field, which allows to recover the classical higher reciprocity law for the polynomial ring <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>t</mi><mo>]</mo></math></span> over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> that is due to Dedekind, Kühne, Artin, and Schmidt. On the other hand, when the ultraproduct is taken over finite fields of unbounded cardinalities, we obtain an explicit higher reciprocity law for the polynomial ring over an infinite field in both characteristics 0 and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> for some prime <em>p</em>. We then use the higher reciprocity law to prove an analogue of the Grunwald–Wang theorem for such a polynomial ring in both characteristics 0 and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span> for some prime <em>p</em>.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 6\",\"pages\":\"Article 103438\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000356\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000356","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为有限域非主超积上的多项式环建立了明确的高等互易律。这种超积可以取自同一有限域,这样就可以恢复戴德金、库内、阿廷和施密特提出的有限域上多项式环的经典高互易律。另一方面,当超积是在无界心数的有限域上进行时,我们会得到一个明确的在无限域上的多项式环的高互易律,它既适用于特征 0,也适用于某个素数 。然后,我们利用高互易律,证明了对于这样一个特性均为 0 且为某个素数的多项式环的格伦沃尔德-王定理的类似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher reciprocity law and an analogue of the Grunwald–Wang theorem for the ring of polynomials over an ultra-finite field

In this paper, we establish an explicit higher reciprocity law for the polynomial ring over a nonprincipal ultraproduct of finite fields. Such an ultraproduct can be taken over the same finite field, which allows to recover the classical higher reciprocity law for the polynomial ring Fq[t] over a finite field Fq that is due to Dedekind, Kühne, Artin, and Schmidt. On the other hand, when the ultraproduct is taken over finite fields of unbounded cardinalities, we obtain an explicit higher reciprocity law for the polynomial ring over an infinite field in both characteristics 0 and p>0 for some prime p. We then use the higher reciprocity law to prove an analogue of the Grunwald–Wang theorem for such a polynomial ring in both characteristics 0 and p>0 for some prime p.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信