{"title":"具有估计风险的尾部均值方差投资组合选择","authors":"Zhenzhen Huang , Pengyu Wei , Chengguo Weng","doi":"10.1016/j.insmatheco.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"116 ","pages":"Pages 218-234"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tail mean-variance portfolio selection with estimation risk\",\"authors\":\"Zhenzhen Huang , Pengyu Wei , Chengguo Weng\",\"doi\":\"10.1016/j.insmatheco.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"116 \",\"pages\":\"Pages 218-234\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724000362\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000362","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Tail mean-variance portfolio selection with estimation risk
Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.