Hengxing Lan , Zheng Zhao , Langping Li , Junhua Li , Bojie Fu , Naiman Tian , Ruixun Lai , Sha Zhou , Yanbo Zhu , Fanyu Zhang , Jianbing Peng , John J. Clague
{"title":"气候变化导致黄河流域洪水风险增加","authors":"Hengxing Lan , Zheng Zhao , Langping Li , Junhua Li , Bojie Fu , Naiman Tian , Ruixun Lai , Sha Zhou , Yanbo Zhu , Fanyu Zhang , Jianbing Peng , John J. Clague","doi":"10.1016/j.geosus.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Yellow River Basin (YRB) has experienced severe floods and continuous riverbed elevation throughout history. Global climate change has been suggested to be driving a worldwide increase in flooding risk. However, owing to insufficient evidence, the quantitative correlation between flooding and climate change remains ill-defined. We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements. Variations in yearly maximum flood discharge show distinct periods: a dramatic decreasing period from 1843 to 1950, and an oscillating gentle decreasing from 1950 to 2021, with the latter period also showing increasing more extreme floods. A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods: an oscillating gentle decreasing period from 1950 to 2000, and a clear recent increasing period from 2000 to 2021. We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an ∼44.4 billion US dollars loss of floods in the YRB in 2100.</p></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"5 2","pages":"Pages 193-199"},"PeriodicalIF":8.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668392400004X/pdfft?md5=c720808b131fa2f6b3d69b298dd7de1e&pid=1-s2.0-S266668392400004X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Climate change drives flooding risk increases in the Yellow River Basin\",\"authors\":\"Hengxing Lan , Zheng Zhao , Langping Li , Junhua Li , Bojie Fu , Naiman Tian , Ruixun Lai , Sha Zhou , Yanbo Zhu , Fanyu Zhang , Jianbing Peng , John J. Clague\",\"doi\":\"10.1016/j.geosus.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Yellow River Basin (YRB) has experienced severe floods and continuous riverbed elevation throughout history. Global climate change has been suggested to be driving a worldwide increase in flooding risk. However, owing to insufficient evidence, the quantitative correlation between flooding and climate change remains ill-defined. We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements. Variations in yearly maximum flood discharge show distinct periods: a dramatic decreasing period from 1843 to 1950, and an oscillating gentle decreasing from 1950 to 2021, with the latter period also showing increasing more extreme floods. A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods: an oscillating gentle decreasing period from 1950 to 2000, and a clear recent increasing period from 2000 to 2021. We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an ∼44.4 billion US dollars loss of floods in the YRB in 2100.</p></div>\",\"PeriodicalId\":52374,\"journal\":{\"name\":\"Geography and Sustainability\",\"volume\":\"5 2\",\"pages\":\"Pages 193-199\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266668392400004X/pdfft?md5=c720808b131fa2f6b3d69b298dd7de1e&pid=1-s2.0-S266668392400004X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266668392400004X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266668392400004X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Climate change drives flooding risk increases in the Yellow River Basin
The Yellow River Basin (YRB) has experienced severe floods and continuous riverbed elevation throughout history. Global climate change has been suggested to be driving a worldwide increase in flooding risk. However, owing to insufficient evidence, the quantitative correlation between flooding and climate change remains ill-defined. We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements. Variations in yearly maximum flood discharge show distinct periods: a dramatic decreasing period from 1843 to 1950, and an oscillating gentle decreasing from 1950 to 2021, with the latter period also showing increasing more extreme floods. A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods: an oscillating gentle decreasing period from 1950 to 2000, and a clear recent increasing period from 2000 to 2021. We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an ∼44.4 billion US dollars loss of floods in the YRB in 2100.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.