风格适应模块:在表面缺陷检测中增强检测器对制造商间差异的稳健性

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chen Li , Xiakai Pan , Peiyuan Zhu , Shidong Zhu , Chengwei Liao , Haoyang Tian , Xiang Qian , Xiu Li , Xiaohao Wang , Xinghui Li
{"title":"风格适应模块:在表面缺陷检测中增强检测器对制造商间差异的稳健性","authors":"Chen Li ,&nbsp;Xiakai Pan ,&nbsp;Peiyuan Zhu ,&nbsp;Shidong Zhu ,&nbsp;Chengwei Liao ,&nbsp;Haoyang Tian ,&nbsp;Xiang Qian ,&nbsp;Xiu Li ,&nbsp;Xiaohao Wang ,&nbsp;Xinghui Li","doi":"10.1016/j.compind.2024.104084","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, deep learning-based approaches for industrial surface defect detection have shown great promise. To address the domain shift issue among data from different sources in the industrial domain, we present a novel plug-and-play Style Adaptation (SA) module, which endows the equipped defect detector with the capability to exhibit robustness to diverse styles present within the samples. This module effectively leverages datasets sourced from diverse origins while possessing congruent data types. In contrast to other domain adaptation approaches lacking well-defined domain delineations, the SA module generates representations characterized by distinct practical implications and precise mathematical formulations. Moreover, incorporating attention mechanisms reduces the need for manual intervention, allowing the module to focus autonomously on crucial branches in it. Experimental results demonstrate the superior efficacy of our approach compared to state-of-the-art techniques. Furthermore, an authentic dataset from various manufacturers is publicly available for deep learning research and industrial applications. Access the dataset at: <span>https://github.com/THU-PMVAI/MTS3D</span><svg><path></path></svg></p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"157 ","pages":"Article 104084"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Style Adaptation module: Enhancing detector robustness to inter-manufacturer variability in surface defect detection\",\"authors\":\"Chen Li ,&nbsp;Xiakai Pan ,&nbsp;Peiyuan Zhu ,&nbsp;Shidong Zhu ,&nbsp;Chengwei Liao ,&nbsp;Haoyang Tian ,&nbsp;Xiang Qian ,&nbsp;Xiu Li ,&nbsp;Xiaohao Wang ,&nbsp;Xinghui Li\",\"doi\":\"10.1016/j.compind.2024.104084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, deep learning-based approaches for industrial surface defect detection have shown great promise. To address the domain shift issue among data from different sources in the industrial domain, we present a novel plug-and-play Style Adaptation (SA) module, which endows the equipped defect detector with the capability to exhibit robustness to diverse styles present within the samples. This module effectively leverages datasets sourced from diverse origins while possessing congruent data types. In contrast to other domain adaptation approaches lacking well-defined domain delineations, the SA module generates representations characterized by distinct practical implications and precise mathematical formulations. Moreover, incorporating attention mechanisms reduces the need for manual intervention, allowing the module to focus autonomously on crucial branches in it. Experimental results demonstrate the superior efficacy of our approach compared to state-of-the-art techniques. Furthermore, an authentic dataset from various manufacturers is publicly available for deep learning research and industrial applications. Access the dataset at: <span>https://github.com/THU-PMVAI/MTS3D</span><svg><path></path></svg></p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"157 \",\"pages\":\"Article 104084\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000125\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000125","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于深度学习的工业表面缺陷检测方法大有可为。为了解决工业领域中不同来源数据之间的领域偏移问题,我们提出了一种新颖的即插即用式风格自适应(SA)模块,该模块使配备的缺陷检测器能够对样本中存在的不同风格表现出鲁棒性。该模块可有效利用来自不同来源的数据集,同时拥有一致的数据类型。与其他缺乏明确领域划分的领域适应方法相比,SA 模块生成的表征具有明显的实际意义和精确的数学公式。此外,结合注意力机制减少了人工干预的需要,使模块能够自主关注其中的关键分支。实验结果表明,与最先进的技术相比,我们的方法具有卓越的功效。此外,我们还公开了来自不同制造商的真实数据集,供深度学习研究和工业应用使用。访问数据集:https://github.com/THU-PMVAI/MTS3D
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Style Adaptation module: Enhancing detector robustness to inter-manufacturer variability in surface defect detection

In recent years, deep learning-based approaches for industrial surface defect detection have shown great promise. To address the domain shift issue among data from different sources in the industrial domain, we present a novel plug-and-play Style Adaptation (SA) module, which endows the equipped defect detector with the capability to exhibit robustness to diverse styles present within the samples. This module effectively leverages datasets sourced from diverse origins while possessing congruent data types. In contrast to other domain adaptation approaches lacking well-defined domain delineations, the SA module generates representations characterized by distinct practical implications and precise mathematical formulations. Moreover, incorporating attention mechanisms reduces the need for manual intervention, allowing the module to focus autonomously on crucial branches in it. Experimental results demonstrate the superior efficacy of our approach compared to state-of-the-art techniques. Furthermore, an authentic dataset from various manufacturers is publicly available for deep learning research and industrial applications. Access the dataset at: https://github.com/THU-PMVAI/MTS3D

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信