蛋白质组编目:单分子蛋白质测序的最新发展。

IF 2.9 Q2 BIOPHYSICS
Biophysics reviews Pub Date : 2022-02-08 eCollection Date: 2022-03-01 DOI:10.1063/5.0065509
Morgan M Brady, Anne S Meyer
{"title":"蛋白质组编目:单分子蛋白质测序的最新发展。","authors":"Morgan M Brady, Anne S Meyer","doi":"10.1063/5.0065509","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular proteome is complex and dynamic, with proteins playing a critical role in cell-level biological processes that contribute to homeostasis, stimuli response, and disease pathology, among others. As such, protein analysis and characterization are of extreme importance in both research and clinical settings. In the last few decades, most proteomics analysis has relied on mass spectrometry, affinity reagents, or some combination thereof. However, these techniques are limited by their requirements for large sample amounts, low resolution, and insufficient dynamic range, making them largely insufficient for the characterization of proteins in low-abundance or single-cell proteomic analysis. Despite unique technical challenges, several single-molecule protein sequencing (SMPS) technologies have been proposed in recent years to address these issues. In this review, we outline several approaches to SMPS technologies and discuss their advantages, limitations, and potential contributions toward an accurate, sensitive, and high-throughput platform.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903494/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cataloguing the proteome: Current developments in single-molecule protein sequencing.\",\"authors\":\"Morgan M Brady, Anne S Meyer\",\"doi\":\"10.1063/5.0065509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cellular proteome is complex and dynamic, with proteins playing a critical role in cell-level biological processes that contribute to homeostasis, stimuli response, and disease pathology, among others. As such, protein analysis and characterization are of extreme importance in both research and clinical settings. In the last few decades, most proteomics analysis has relied on mass spectrometry, affinity reagents, or some combination thereof. However, these techniques are limited by their requirements for large sample amounts, low resolution, and insufficient dynamic range, making them largely insufficient for the characterization of proteins in low-abundance or single-cell proteomic analysis. Despite unique technical challenges, several single-molecule protein sequencing (SMPS) technologies have been proposed in recent years to address these issues. In this review, we outline several approaches to SMPS technologies and discuss their advantages, limitations, and potential contributions toward an accurate, sensitive, and high-throughput platform.</p>\",\"PeriodicalId\":72405,\"journal\":{\"name\":\"Biophysics reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903494/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0065509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0065509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

细胞蛋白质组是复杂而动态的,蛋白质在细胞水平的生物过程中发挥着关键作用,而这些生物过程对细胞的稳态、刺激反应和疾病病理等都有贡献。因此,蛋白质分析和表征在研究和临床中都极为重要。在过去几十年中,大多数蛋白质组学分析都依赖于质谱法、亲和试剂或它们的某种组合。然而,这些技术由于需要大量样品、分辨率低和动态范围不足而受到限制,在很大程度上不足以表征低丰度或单细胞蛋白质组学分析中的蛋白质。尽管存在独特的技术挑战,近年来仍有几种单分子蛋白质测序(SMPS)技术被提出来解决这些问题。在这篇综述中,我们概述了几种单分子蛋白质测序技术的方法,并讨论了它们的优势、局限性以及对建立精确、灵敏和高通量平台的潜在贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cataloguing the proteome: Current developments in single-molecule protein sequencing.

The cellular proteome is complex and dynamic, with proteins playing a critical role in cell-level biological processes that contribute to homeostasis, stimuli response, and disease pathology, among others. As such, protein analysis and characterization are of extreme importance in both research and clinical settings. In the last few decades, most proteomics analysis has relied on mass spectrometry, affinity reagents, or some combination thereof. However, these techniques are limited by their requirements for large sample amounts, low resolution, and insufficient dynamic range, making them largely insufficient for the characterization of proteins in low-abundance or single-cell proteomic analysis. Despite unique technical challenges, several single-molecule protein sequencing (SMPS) technologies have been proposed in recent years to address these issues. In this review, we outline several approaches to SMPS technologies and discuss their advantages, limitations, and potential contributions toward an accurate, sensitive, and high-throughput platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信