{"title":"利用预训练卷积神经网络进行迁移学习,实现前列腺癌组织芯片格雷欣分级自动化","authors":"Parisa Gifani, Ahmad Shalbaf","doi":"10.4103/jmss.jmss_42_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Gleason grading system has been the most effective prediction for prostate cancer patients. This grading system provides this possibility to assess prostate cancer's aggressiveness and then constitutes an important factor for stratification and therapeutic decisions. However, determining Gleason grade requires highly-trained pathologists and is time-consuming and tedious, and suffers from inter-pathologist variability. To remedy these limitations, this paper introduces an automatic methodology based on transfer learning with pretrained convolutional neural networks (CNNs) for automatic Gleason grading of prostate cancer tissue microarray (TMA).</p><p><strong>Methods: </strong>Fifteen pretrained (CNNs): Efficient Nets (B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50, and inception_resnet_v2 were fine-tuned on a dataset of prostate carcinoma TMA images. Six pathologists separately identified benign and cancerous areas for each prostate TMA image by allocating benign, 3, 4, or 5 Gleason grade for 244 patients. The dataset was labeled by these pathologists and majority vote was applied on pixel-wise annotations to obtain a unified label.</p><p><strong>Results: </strong>Results showed the NasnetLarge architecture is the best model among them in the classification of prostate TMA images of 244 patients with accuracy of 0.93 and area under the curve of 0.98.</p><p><strong>Conclusion: </strong>Our study can act as a highly trained pathologist to categorize the prostate cancer stages with more objective and reproducible results.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"4"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning with Pretrained Convolutional Neural Network for Automated Gleason Grading of Prostate Cancer Tissue Microarrays.\",\"authors\":\"Parisa Gifani, Ahmad Shalbaf\",\"doi\":\"10.4103/jmss.jmss_42_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Gleason grading system has been the most effective prediction for prostate cancer patients. This grading system provides this possibility to assess prostate cancer's aggressiveness and then constitutes an important factor for stratification and therapeutic decisions. However, determining Gleason grade requires highly-trained pathologists and is time-consuming and tedious, and suffers from inter-pathologist variability. To remedy these limitations, this paper introduces an automatic methodology based on transfer learning with pretrained convolutional neural networks (CNNs) for automatic Gleason grading of prostate cancer tissue microarray (TMA).</p><p><strong>Methods: </strong>Fifteen pretrained (CNNs): Efficient Nets (B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50, and inception_resnet_v2 were fine-tuned on a dataset of prostate carcinoma TMA images. Six pathologists separately identified benign and cancerous areas for each prostate TMA image by allocating benign, 3, 4, or 5 Gleason grade for 244 patients. The dataset was labeled by these pathologists and majority vote was applied on pixel-wise annotations to obtain a unified label.</p><p><strong>Results: </strong>Results showed the NasnetLarge architecture is the best model among them in the classification of prostate TMA images of 244 patients with accuracy of 0.93 and area under the curve of 0.98.</p><p><strong>Conclusion: </strong>Our study can act as a highly trained pathologist to categorize the prostate cancer stages with more objective and reproducible results.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"14 \",\"pages\":\"4\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_42_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_42_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Transfer Learning with Pretrained Convolutional Neural Network for Automated Gleason Grading of Prostate Cancer Tissue Microarrays.
Background: The Gleason grading system has been the most effective prediction for prostate cancer patients. This grading system provides this possibility to assess prostate cancer's aggressiveness and then constitutes an important factor for stratification and therapeutic decisions. However, determining Gleason grade requires highly-trained pathologists and is time-consuming and tedious, and suffers from inter-pathologist variability. To remedy these limitations, this paper introduces an automatic methodology based on transfer learning with pretrained convolutional neural networks (CNNs) for automatic Gleason grading of prostate cancer tissue microarray (TMA).
Methods: Fifteen pretrained (CNNs): Efficient Nets (B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50, and inception_resnet_v2 were fine-tuned on a dataset of prostate carcinoma TMA images. Six pathologists separately identified benign and cancerous areas for each prostate TMA image by allocating benign, 3, 4, or 5 Gleason grade for 244 patients. The dataset was labeled by these pathologists and majority vote was applied on pixel-wise annotations to obtain a unified label.
Results: Results showed the NasnetLarge architecture is the best model among them in the classification of prostate TMA images of 244 patients with accuracy of 0.93 and area under the curve of 0.98.
Conclusion: Our study can act as a highly trained pathologist to categorize the prostate cancer stages with more objective and reproducible results.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.