Mengling Qi, Haoyang Zhang, Xuehao Xiu, Dan He, David N Cooper, Yuanhao Yang, Huiying Zhao
{"title":"从 12 导联心电图中获得 T 波区域的基因证据,以监测糖尿病患者的心血管疾病。","authors":"Mengling Qi, Haoyang Zhang, Xuehao Xiu, Dan He, David N Cooper, Yuanhao Yang, Huiying Zhao","doi":"10.1007/s00439-024-02661-6","DOIUrl":null,"url":null,"abstract":"<p><p>Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1095-1108"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic evidence for T-wave area from 12-lead electrocardiograms to monitor cardiovascular diseases in patients taking diabetes medications.\",\"authors\":\"Mengling Qi, Haoyang Zhang, Xuehao Xiu, Dan He, David N Cooper, Yuanhao Yang, Huiying Zhao\",\"doi\":\"10.1007/s00439-024-02661-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"1095-1108\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02661-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02661-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genetic evidence for T-wave area from 12-lead electrocardiograms to monitor cardiovascular diseases in patients taking diabetes medications.
Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.