论开源二项式随机变量生成算法的平均运行时间

Vincent A. Cicirello
{"title":"论开源二项式随机变量生成算法的平均运行时间","authors":"Vincent A. Cicirello","doi":"arxiv-2403.11018","DOIUrl":null,"url":null,"abstract":"The BTPE algorithm (Binomial, Triangle, Parallelogram, Exponential) of\nKachitvichyanukul and Schmeiser is one of the faster and more widely utilized\nalgorithms for generating binomial random variates. Cicirello's open source\nJava library, $\\rho\\mu$, includes an implementation of BTPE as well as a\nvariety of other random number related utilities. In this report, I explore the\naverage case runtime of the BTPE algorithm when generating random values from\nbinomial distribution $B(n,p)$. Beginning with Kachitvichyanukul and\nSchmeiser's formula for the expected number of acceptance-rejection sampling\niterations, I analyze the limit behavior as $n$ approaches infinity, and show\nthat the average runtime of BTPE converges to a constant. I instrument the open\nsource Java implementation from the $\\rho\\mu$ library to experimentally\nvalidate the analysis.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Average Runtime of an Open Source Binomial Random Variate Generation Algorithm\",\"authors\":\"Vincent A. Cicirello\",\"doi\":\"arxiv-2403.11018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BTPE algorithm (Binomial, Triangle, Parallelogram, Exponential) of\\nKachitvichyanukul and Schmeiser is one of the faster and more widely utilized\\nalgorithms for generating binomial random variates. Cicirello's open source\\nJava library, $\\\\rho\\\\mu$, includes an implementation of BTPE as well as a\\nvariety of other random number related utilities. In this report, I explore the\\naverage case runtime of the BTPE algorithm when generating random values from\\nbinomial distribution $B(n,p)$. Beginning with Kachitvichyanukul and\\nSchmeiser's formula for the expected number of acceptance-rejection sampling\\niterations, I analyze the limit behavior as $n$ approaches infinity, and show\\nthat the average runtime of BTPE converges to a constant. I instrument the open\\nsource Java implementation from the $\\\\rho\\\\mu$ library to experimentally\\nvalidate the analysis.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.11018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.11018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卡奇特维奇亚努库尔(Kachitvichyanukul)和施迈泽(Schmeiser)的 BTPE 算法(二项式、三角形、平行四边形、指数)是生成二项式随机变量的更快、更广泛使用的算法之一。Cicirello 的开源 Java 库 $\rho\mu$ 包括 BTPE 的实现以及其他多种与随机数相关的实用程序。在本报告中,我将探讨 BTPE 算法从二项分布 $B(n,p)$生成随机值时的平均运行时间。从 Kachitvichyanukul 和 Schmeiser 的预期接受-拒绝采样iterations 次数公式开始,我分析了当 $n$ 接近无穷大时的极限行为,并证明 BTPE 的平均运行时间收敛于一个常数。我利用 $\rho\mu$ 库中的开源 Java 实现对该分析进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Average Runtime of an Open Source Binomial Random Variate Generation Algorithm
The BTPE algorithm (Binomial, Triangle, Parallelogram, Exponential) of Kachitvichyanukul and Schmeiser is one of the faster and more widely utilized algorithms for generating binomial random variates. Cicirello's open source Java library, $\rho\mu$, includes an implementation of BTPE as well as a variety of other random number related utilities. In this report, I explore the average case runtime of the BTPE algorithm when generating random values from binomial distribution $B(n,p)$. Beginning with Kachitvichyanukul and Schmeiser's formula for the expected number of acceptance-rejection sampling iterations, I analyze the limit behavior as $n$ approaches infinity, and show that the average runtime of BTPE converges to a constant. I instrument the open source Java implementation from the $\rho\mu$ library to experimentally validate the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信