仿射合成算子的最小不变子空间

IF 0.7 4区 数学 Q2 MATHEMATICS
João R. Carmo, Ben Hur Eidt, S. Waleed Noor
{"title":"仿射合成算子的最小不变子空间","authors":"João R. Carmo, Ben Hur Eidt, S. Waleed Noor","doi":"10.1007/s11785-024-01501-9","DOIUrl":null,"url":null,"abstract":"<p>The composition operator <span>\\(C_{\\phi _a}f=f\\circ \\phi _a\\)</span> on the Hardy–Hilbert space <span>\\(H^2({\\mathbb {D}})\\)</span> with affine symbol <span>\\(\\phi _a(z)=az+1-a\\)</span> and <span>\\(0&lt;a&lt;1\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\(C_{\\phi _a}\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\( K_f:= \\overline{\\textrm{span} \\{f, C_{\\phi _a}f, C^2_{\\phi _a}f, \\ldots \\}}\\)</span> for some <span>\\(f\\in H^2({\\mathbb {D}})\\)</span>. In this article we characterize the minimal <span>\\(K_f\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\(f'\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\(K_f\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Invariant Subspaces for an Affine Composition Operator\",\"authors\":\"João R. Carmo, Ben Hur Eidt, S. Waleed Noor\",\"doi\":\"10.1007/s11785-024-01501-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The composition operator <span>\\\\(C_{\\\\phi _a}f=f\\\\circ \\\\phi _a\\\\)</span> on the Hardy–Hilbert space <span>\\\\(H^2({\\\\mathbb {D}})\\\\)</span> with affine symbol <span>\\\\(\\\\phi _a(z)=az+1-a\\\\)</span> and <span>\\\\(0&lt;a&lt;1\\\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\\\(C_{\\\\phi _a}\\\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\\\( K_f:= \\\\overline{\\\\textrm{span} \\\\{f, C_{\\\\phi _a}f, C^2_{\\\\phi _a}f, \\\\ldots \\\\}}\\\\)</span> for some <span>\\\\(f\\\\in H^2({\\\\mathbb {D}})\\\\)</span>. In this article we characterize the minimal <span>\\\\(K_f\\\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\\\(f'\\\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\\\(K_f\\\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01501-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01501-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

哈代-希尔伯特空间(H^2({\mathbb {D}})上的组成算子 \(C_{\phi _a}f=f\circ \phi _a\) 具有仿射符号 \(\phi _a(z)=az+1-a\) 和 \(0<a<;(C_{\phi_a}/)的每个最小不变子空间都是一维的情况下,复可分离希尔伯特空间的不变子空间问题才成立。这些最小不变子空间总是单生成的( K_f:= (overline{\textrm{span})。\{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\).在本文中,我们将描述当f在点1处有一个非零极限或者其导数\(f'\)在1附近有边界时的\(K_f\)最小值。我们还考虑了 f 的零集在决定 \(K_f\) 时的作用。最后,我们证明了一个将罗塔意义上的普遍性与循环性联系起来的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Invariant Subspaces for an Affine Composition Operator

The composition operator \(C_{\phi _a}f=f\circ \phi _a\) on the Hardy–Hilbert space \(H^2({\mathbb {D}})\) with affine symbol \(\phi _a(z)=az+1-a\) and \(0<a<1\) has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for \(C_{\phi _a}\) is one-dimensional. These minimal invariant subspaces are always singly-generated \( K_f:= \overline{\textrm{span} \{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\). In this article we characterize the minimal \(K_f\) when f has a nonzero limit at the point 1 or if its derivative \(f'\) is bounded near 1. We also consider the role of the zero set of f in determining \(K_f\). Finally we prove a result linking universality in the sense of Rota with cyclicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信