{"title":"仿射合成算子的最小不变子空间","authors":"João R. Carmo, Ben Hur Eidt, S. Waleed Noor","doi":"10.1007/s11785-024-01501-9","DOIUrl":null,"url":null,"abstract":"<p>The composition operator <span>\\(C_{\\phi _a}f=f\\circ \\phi _a\\)</span> on the Hardy–Hilbert space <span>\\(H^2({\\mathbb {D}})\\)</span> with affine symbol <span>\\(\\phi _a(z)=az+1-a\\)</span> and <span>\\(0<a<1\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\(C_{\\phi _a}\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\( K_f:= \\overline{\\textrm{span} \\{f, C_{\\phi _a}f, C^2_{\\phi _a}f, \\ldots \\}}\\)</span> for some <span>\\(f\\in H^2({\\mathbb {D}})\\)</span>. In this article we characterize the minimal <span>\\(K_f\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\(f'\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\(K_f\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Invariant Subspaces for an Affine Composition Operator\",\"authors\":\"João R. Carmo, Ben Hur Eidt, S. Waleed Noor\",\"doi\":\"10.1007/s11785-024-01501-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The composition operator <span>\\\\(C_{\\\\phi _a}f=f\\\\circ \\\\phi _a\\\\)</span> on the Hardy–Hilbert space <span>\\\\(H^2({\\\\mathbb {D}})\\\\)</span> with affine symbol <span>\\\\(\\\\phi _a(z)=az+1-a\\\\)</span> and <span>\\\\(0<a<1\\\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\\\(C_{\\\\phi _a}\\\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\\\( K_f:= \\\\overline{\\\\textrm{span} \\\\{f, C_{\\\\phi _a}f, C^2_{\\\\phi _a}f, \\\\ldots \\\\}}\\\\)</span> for some <span>\\\\(f\\\\in H^2({\\\\mathbb {D}})\\\\)</span>. In this article we characterize the minimal <span>\\\\(K_f\\\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\\\(f'\\\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\\\(K_f\\\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01501-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01501-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
哈代-希尔伯特空间(H^2({\mathbb {D}})上的组成算子 \(C_{\phi _a}f=f\circ \phi _a\) 具有仿射符号 \(\phi _a(z)=az+1-a\) 和 \(0<a<;(C_{\phi_a}/)的每个最小不变子空间都是一维的情况下,复可分离希尔伯特空间的不变子空间问题才成立。这些最小不变子空间总是单生成的( K_f:= (overline{\textrm{span})。\{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\).在本文中,我们将描述当f在点1处有一个非零极限或者其导数\(f'\)在1附近有边界时的\(K_f\)最小值。我们还考虑了 f 的零集在决定 \(K_f\) 时的作用。最后,我们证明了一个将罗塔意义上的普遍性与循环性联系起来的结果。
Minimal Invariant Subspaces for an Affine Composition Operator
The composition operator \(C_{\phi _a}f=f\circ \phi _a\) on the Hardy–Hilbert space \(H^2({\mathbb {D}})\) with affine symbol \(\phi _a(z)=az+1-a\) and \(0<a<1\) has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for \(C_{\phi _a}\) is one-dimensional. These minimal invariant subspaces are always singly-generated \( K_f:= \overline{\textrm{span} \{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\). In this article we characterize the minimal \(K_f\) when f has a nonzero limit at the point 1 or if its derivative \(f'\) is bounded near 1. We also consider the role of the zero set of f in determining \(K_f\). Finally we prove a result linking universality in the sense of Rota with cyclicity.