{"title":"超声波振动辅助带瓣轮柔性抛光的加工行为和实验研究","authors":"","doi":"10.1007/s00170-024-13380-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The integral blisk has been widely used in aerospace, and its structural performance is inextricably linked to the blade surface quality. To improve the surface integrity of polished surface, ultrasonic vibration assisted belt flapwheel flexible polishing (UBFP) is proposed. In this study, the polishing principle of UBFP and the effects of vibration on surface generation are investigated, and kinematic analyses and trajectory simulations are performed. Furthermore, the influences of the main processing parameters on the polishing force and surface roughness in UBFP are explored experimentally, and the sensitivity of the main parameters is distinguished by multi-parameter relative sensitivity analysis based on Monte Carlo simulation. The results show that the ultrasonic vibration contributes to the polishing process primarily through kinematic state changing and trajectories interlacing of abrasives. Compared with conventional belt flapwheel flexible polishing, the polishing force decreases by 15.72% and the surface roughness decreases by 17.39%. The compression depth is the most sensitive parameter in the process of UBFP. This study demonstrates the feasibility of UBFP and provides a theoretical and experimental reference for improving the polishing surface quality of the blisk blade.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machining behavior and experimental investigation of ultrasonic vibration assisted belt flapwheel flexible polishing\",\"authors\":\"\",\"doi\":\"10.1007/s00170-024-13380-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The integral blisk has been widely used in aerospace, and its structural performance is inextricably linked to the blade surface quality. To improve the surface integrity of polished surface, ultrasonic vibration assisted belt flapwheel flexible polishing (UBFP) is proposed. In this study, the polishing principle of UBFP and the effects of vibration on surface generation are investigated, and kinematic analyses and trajectory simulations are performed. Furthermore, the influences of the main processing parameters on the polishing force and surface roughness in UBFP are explored experimentally, and the sensitivity of the main parameters is distinguished by multi-parameter relative sensitivity analysis based on Monte Carlo simulation. The results show that the ultrasonic vibration contributes to the polishing process primarily through kinematic state changing and trajectories interlacing of abrasives. Compared with conventional belt flapwheel flexible polishing, the polishing force decreases by 15.72% and the surface roughness decreases by 17.39%. The compression depth is the most sensitive parameter in the process of UBFP. This study demonstrates the feasibility of UBFP and provides a theoretical and experimental reference for improving the polishing surface quality of the blisk blade.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13380-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13380-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Machining behavior and experimental investigation of ultrasonic vibration assisted belt flapwheel flexible polishing
Abstract
The integral blisk has been widely used in aerospace, and its structural performance is inextricably linked to the blade surface quality. To improve the surface integrity of polished surface, ultrasonic vibration assisted belt flapwheel flexible polishing (UBFP) is proposed. In this study, the polishing principle of UBFP and the effects of vibration on surface generation are investigated, and kinematic analyses and trajectory simulations are performed. Furthermore, the influences of the main processing parameters on the polishing force and surface roughness in UBFP are explored experimentally, and the sensitivity of the main parameters is distinguished by multi-parameter relative sensitivity analysis based on Monte Carlo simulation. The results show that the ultrasonic vibration contributes to the polishing process primarily through kinematic state changing and trajectories interlacing of abrasives. Compared with conventional belt flapwheel flexible polishing, the polishing force decreases by 15.72% and the surface roughness decreases by 17.39%. The compression depth is the most sensitive parameter in the process of UBFP. This study demonstrates the feasibility of UBFP and provides a theoretical and experimental reference for improving the polishing surface quality of the blisk blade.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.