Xuan Zhang, Necdet Serhat Aybat, Mert Gürbüzbalaban
{"title":"用于计算鞍点的稳健加速原始双方法","authors":"Xuan Zhang, Necdet Serhat Aybat, Mert Gürbüzbalaban","doi":"10.1137/21m1462775","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 1097-1130, March 2024. <br/> Abstract. We consider strongly-convex-strongly-concave saddle point problems assuming we have access to unbiased stochastic estimates of the gradients. We propose a stochastic accelerated primal-dual (SAPD) algorithm and show that the SAPD sequence, generated using constant primal-dual step sizes, linearly converges to a neighborhood of the unique saddle point. Interpreting the size of the neighborhood as a measure of robustness to gradient noise, we obtain explicit characterizations of robustness in terms of SAPD parameters and problem constants. Based on these characterizations, we develop computationally tractable techniques for optimizing the SAPD parameters, i.e., the primal and dual step sizes, and the momentum parameter, to achieve a desired trade-off between the convergence rate and robustness on the Pareto curve. This allows SAPD to enjoy fast convergence properties while being robust to noise as an accelerated method. SAPD admits convergence guarantees for the distance metric with a variance term optimal up to a logarithmic factor, which can be removed by employing a restarting strategy. We also discuss how convergence and robustness results extend to the merely-convex-merely-concave setting. Finally, we illustrate our framework on a distributionally robust logistic regression problem.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Accelerated Primal-Dual Methods for Computing Saddle Points\",\"authors\":\"Xuan Zhang, Necdet Serhat Aybat, Mert Gürbüzbalaban\",\"doi\":\"10.1137/21m1462775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 1, Page 1097-1130, March 2024. <br/> Abstract. We consider strongly-convex-strongly-concave saddle point problems assuming we have access to unbiased stochastic estimates of the gradients. We propose a stochastic accelerated primal-dual (SAPD) algorithm and show that the SAPD sequence, generated using constant primal-dual step sizes, linearly converges to a neighborhood of the unique saddle point. Interpreting the size of the neighborhood as a measure of robustness to gradient noise, we obtain explicit characterizations of robustness in terms of SAPD parameters and problem constants. Based on these characterizations, we develop computationally tractable techniques for optimizing the SAPD parameters, i.e., the primal and dual step sizes, and the momentum parameter, to achieve a desired trade-off between the convergence rate and robustness on the Pareto curve. This allows SAPD to enjoy fast convergence properties while being robust to noise as an accelerated method. SAPD admits convergence guarantees for the distance metric with a variance term optimal up to a logarithmic factor, which can be removed by employing a restarting strategy. We also discuss how convergence and robustness results extend to the merely-convex-merely-concave setting. Finally, we illustrate our framework on a distributionally robust logistic regression problem.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1462775\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1462775","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Robust Accelerated Primal-Dual Methods for Computing Saddle Points
SIAM Journal on Optimization, Volume 34, Issue 1, Page 1097-1130, March 2024. Abstract. We consider strongly-convex-strongly-concave saddle point problems assuming we have access to unbiased stochastic estimates of the gradients. We propose a stochastic accelerated primal-dual (SAPD) algorithm and show that the SAPD sequence, generated using constant primal-dual step sizes, linearly converges to a neighborhood of the unique saddle point. Interpreting the size of the neighborhood as a measure of robustness to gradient noise, we obtain explicit characterizations of robustness in terms of SAPD parameters and problem constants. Based on these characterizations, we develop computationally tractable techniques for optimizing the SAPD parameters, i.e., the primal and dual step sizes, and the momentum parameter, to achieve a desired trade-off between the convergence rate and robustness on the Pareto curve. This allows SAPD to enjoy fast convergence properties while being robust to noise as an accelerated method. SAPD admits convergence guarantees for the distance metric with a variance term optimal up to a logarithmic factor, which can be removed by employing a restarting strategy. We also discuss how convergence and robustness results extend to the merely-convex-merely-concave setting. Finally, we illustrate our framework on a distributionally robust logistic regression problem.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.