利用氨基酸序列和结构字母表,基于机器学习预测蛋白质结构

Jad Abbass, Charles Parisi
{"title":"利用氨基酸序列和结构字母表,基于机器学习预测蛋白质结构","authors":"Jad Abbass, Charles Parisi","doi":"10.1080/07391102.2024.2328736","DOIUrl":null,"url":null,"abstract":"In addition to the growth of protein structures generated through wet laboratory experiments and deposited in the PDB repository, AlphaFold predictions have significantly contributed to the creatio...","PeriodicalId":15085,"journal":{"name":"Journal of Biomolecular Structure and Dynamics","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of proteins’ architecture using sequences of amino acids and structural alphabets\",\"authors\":\"Jad Abbass, Charles Parisi\",\"doi\":\"10.1080/07391102.2024.2328736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to the growth of protein structures generated through wet laboratory experiments and deposited in the PDB repository, AlphaFold predictions have significantly contributed to the creatio...\",\"PeriodicalId\":15085,\"journal\":{\"name\":\"Journal of Biomolecular Structure and Dynamics\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2328736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2328736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了通过湿实验室实验生成并存入 PDB 存储库的蛋白质结构的增长外,AlphaFold 预测还为创造新的蛋白质结构做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based prediction of proteins’ architecture using sequences of amino acids and structural alphabets
In addition to the growth of protein structures generated through wet laboratory experiments and deposited in the PDB repository, AlphaFold predictions have significantly contributed to the creatio...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信