Lei Zhou, Chuanlin Liu, Amit Yadav, Sami Azam, Asif Karim
{"title":"基于边缘提取和奇异值的模糊度图像质量评估方法","authors":"Lei Zhou, Chuanlin Liu, Amit Yadav, Sami Azam, Asif Karim","doi":"10.1007/s00138-024-01522-6","DOIUrl":null,"url":null,"abstract":"<p>The automatic assessment of perceived image quality is crucial in the field of image processing. To achieve this idea, we propose an image quality assessment (IQA) method for blurriness. The features of gradient and singular value were extracted in this method instead of the single feature in the traditional IQA algorithms. According to the insufficient size of existing public image quality assessment datasets to support deep learning, machine learning was introduced to fuse the features of multiple domains, and a new no-reference (NR) IQA method for blurriness denoted Feature fusion IQA(Ffu-IQA) was proposed. The Ffu-IQA uses a probabilistic model to estimate the probability of each edge detection blur in the image, and then uses machine learning to aggregate the probability information to obtain the edge quality score. After that uses the singular value obtained by singular value decomposition of the image matrix to calculate the singular value score. Finally, machine learning pooling is used to obtain the true quality score. Ffu-IQA achieves PLCC scores of 0.9570 and 0.9616 on CSIQ and TID2013, respectively, and SROCC scores of 0.9380 and 0.9531, which are better than most traditional image quality assessment methods for blurriness.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"6 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An image quality assessment method based on edge extraction and singular value for blurriness\",\"authors\":\"Lei Zhou, Chuanlin Liu, Amit Yadav, Sami Azam, Asif Karim\",\"doi\":\"10.1007/s00138-024-01522-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The automatic assessment of perceived image quality is crucial in the field of image processing. To achieve this idea, we propose an image quality assessment (IQA) method for blurriness. The features of gradient and singular value were extracted in this method instead of the single feature in the traditional IQA algorithms. According to the insufficient size of existing public image quality assessment datasets to support deep learning, machine learning was introduced to fuse the features of multiple domains, and a new no-reference (NR) IQA method for blurriness denoted Feature fusion IQA(Ffu-IQA) was proposed. The Ffu-IQA uses a probabilistic model to estimate the probability of each edge detection blur in the image, and then uses machine learning to aggregate the probability information to obtain the edge quality score. After that uses the singular value obtained by singular value decomposition of the image matrix to calculate the singular value score. Finally, machine learning pooling is used to obtain the true quality score. Ffu-IQA achieves PLCC scores of 0.9570 and 0.9616 on CSIQ and TID2013, respectively, and SROCC scores of 0.9380 and 0.9531, which are better than most traditional image quality assessment methods for blurriness.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01522-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01522-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An image quality assessment method based on edge extraction and singular value for blurriness
The automatic assessment of perceived image quality is crucial in the field of image processing. To achieve this idea, we propose an image quality assessment (IQA) method for blurriness. The features of gradient and singular value were extracted in this method instead of the single feature in the traditional IQA algorithms. According to the insufficient size of existing public image quality assessment datasets to support deep learning, machine learning was introduced to fuse the features of multiple domains, and a new no-reference (NR) IQA method for blurriness denoted Feature fusion IQA(Ffu-IQA) was proposed. The Ffu-IQA uses a probabilistic model to estimate the probability of each edge detection blur in the image, and then uses machine learning to aggregate the probability information to obtain the edge quality score. After that uses the singular value obtained by singular value decomposition of the image matrix to calculate the singular value score. Finally, machine learning pooling is used to obtain the true quality score. Ffu-IQA achieves PLCC scores of 0.9570 and 0.9616 on CSIQ and TID2013, respectively, and SROCC scores of 0.9380 and 0.9531, which are better than most traditional image quality assessment methods for blurriness.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.