{"title":"博格雅夫林斯基网格和广义加泰罗尼亚数","authors":"V.E. Adler","doi":"10.1134/S106192084010011","DOIUrl":null,"url":null,"abstract":"<p> We study the problem of the decay of initial data in the form of a unit step for the Bogoyavlensky lattices. In contrast to the Gurevich–Pitaevskii problem of the decay of initial discontinuity for the KdV equation, it turns out to be exactly solvable, since the dynamics is linearizable due to termination on the half-line. The answer is written in terms of generalized hypergeometric functions, which serve as exponential generating functions for generalized Catalan numbers. This can be proved by the fact that the generalized Hankel determinants for these numbers are equal to 1, which is a well-known result in combinatorics. Another method is based on a nonautonomous symmetry reduction consistent with the dynamics. It reduces the lattice equation to a finite-dimensional system and makes it possible to solve the problem for a more general finite-parameter family of initial data. </p><p> <b> DOI</b> 10.1134/S106192084010011 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"1 - 23"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bogoyavlensky Lattices and Generalized Catalan Numbers\",\"authors\":\"V.E. Adler\",\"doi\":\"10.1134/S106192084010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the problem of the decay of initial data in the form of a unit step for the Bogoyavlensky lattices. In contrast to the Gurevich–Pitaevskii problem of the decay of initial discontinuity for the KdV equation, it turns out to be exactly solvable, since the dynamics is linearizable due to termination on the half-line. The answer is written in terms of generalized hypergeometric functions, which serve as exponential generating functions for generalized Catalan numbers. This can be proved by the fact that the generalized Hankel determinants for these numbers are equal to 1, which is a well-known result in combinatorics. Another method is based on a nonautonomous symmetry reduction consistent with the dynamics. It reduces the lattice equation to a finite-dimensional system and makes it possible to solve the problem for a more general finite-parameter family of initial data. </p><p> <b> DOI</b> 10.1134/S106192084010011 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 1\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192084010011\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192084010011","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们研究了 Bogoyavlensky 晶格的单位步形式的初始数据衰减问题。与古列维奇-皮塔耶夫斯基(Gurevich-Pitaevskii)提出的 KdV 方程初始不连续性衰减问题不同,这个问题被证明是完全可解的,因为由于在半线上终止,动力学是可线性化的。答案是用广义超几何函数写成的,这些函数是广义加泰罗尼亚数的指数生成函数。这可以通过这些数的广义汉克尔行列式等于 1 这一事实来证明,这是组合学中的一个著名结果。另一种方法基于与动力学一致的非自主对称性还原。它将晶格方程还原为有限维系统,从而有可能求解更一般的有限参数初始数据族的问题。 doi 10.1134/s106192084010011
Bogoyavlensky Lattices and Generalized Catalan Numbers
We study the problem of the decay of initial data in the form of a unit step for the Bogoyavlensky lattices. In contrast to the Gurevich–Pitaevskii problem of the decay of initial discontinuity for the KdV equation, it turns out to be exactly solvable, since the dynamics is linearizable due to termination on the half-line. The answer is written in terms of generalized hypergeometric functions, which serve as exponential generating functions for generalized Catalan numbers. This can be proved by the fact that the generalized Hankel determinants for these numbers are equal to 1, which is a well-known result in combinatorics. Another method is based on a nonautonomous symmetry reduction consistent with the dynamics. It reduces the lattice equation to a finite-dimensional system and makes it possible to solve the problem for a more general finite-parameter family of initial data.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.