另一个台球问题

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S. Bolotin, D. Treschev
{"title":"另一个台球问题","authors":"S. Bolotin,&nbsp;D. Treschev","doi":"10.1134/S106192084010047","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\((M,g)\\)</span> be a Riemannian manifold, <span>\\(\\Omega\\subset M\\)</span> a domain with boundary <span>\\(\\Gamma\\)</span>, and <span>\\(\\phi\\)</span> a smooth function such that <span>\\(\\phi|_\\Omega &gt; 0\\)</span>, <span>\\( \\varphi |_\\Gamma = 0\\)</span>, and <span>\\(d\\phi|_\\Gamma\\ne 0\\)</span>. We study the geodesic flow of the metric <span>\\(G=g/\\phi\\)</span>. The <span>\\(G\\)</span>-distance from any point of <span>\\(\\Omega\\)</span> to <span>\\(\\Gamma\\)</span> is finite, hence, the geodesic flow is incomplete. Regularization of the flow in a neighborhood of <span>\\(\\Gamma\\)</span> establishes a natural reflection law from <span>\\(\\Gamma\\)</span>. This leads to a certain (not quite standard) billiard problem in <span>\\(\\Omega\\)</span>. </p><p> <b> DOI</b> 10.1134/S106192084010047 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"50 - 59"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another Billiard Problem\",\"authors\":\"S. Bolotin,&nbsp;D. Treschev\",\"doi\":\"10.1134/S106192084010047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\((M,g)\\\\)</span> be a Riemannian manifold, <span>\\\\(\\\\Omega\\\\subset M\\\\)</span> a domain with boundary <span>\\\\(\\\\Gamma\\\\)</span>, and <span>\\\\(\\\\phi\\\\)</span> a smooth function such that <span>\\\\(\\\\phi|_\\\\Omega &gt; 0\\\\)</span>, <span>\\\\( \\\\varphi |_\\\\Gamma = 0\\\\)</span>, and <span>\\\\(d\\\\phi|_\\\\Gamma\\\\ne 0\\\\)</span>. We study the geodesic flow of the metric <span>\\\\(G=g/\\\\phi\\\\)</span>. The <span>\\\\(G\\\\)</span>-distance from any point of <span>\\\\(\\\\Omega\\\\)</span> to <span>\\\\(\\\\Gamma\\\\)</span> is finite, hence, the geodesic flow is incomplete. Regularization of the flow in a neighborhood of <span>\\\\(\\\\Gamma\\\\)</span> establishes a natural reflection law from <span>\\\\(\\\\Gamma\\\\)</span>. This leads to a certain (not quite standard) billiard problem in <span>\\\\(\\\\Omega\\\\)</span>. </p><p> <b> DOI</b> 10.1134/S106192084010047 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 1\",\"pages\":\"50 - 59\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192084010047\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192084010047","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Let \((M,g)\) be a Riemannian manifold, \(\Omega\subset M\) a domain with boundary \(\Gamma\), and\(\phi\) a smooth function such that \(\phi|_\Omega > 0\),\( \varphi |_\Gamma = 0\), and\(d\phi|_\Gamma\ne 0\).我们研究度量 \(G=g/\phi\) 的大地流。从\(\Omega\)的任何一点到\(\Gamma\)的距离都是有限的,因此,大地流是不完整的。在(\ω\)的邻域内流动的正则化建立了从(\ω\)到(\ω\)的自然反射定律。这引出了某个(不太标准的)台球问题。 doi 10.1134/s106192084010047
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another Billiard Problem

Let \((M,g)\) be a Riemannian manifold, \(\Omega\subset M\) a domain with boundary \(\Gamma\), and \(\phi\) a smooth function such that \(\phi|_\Omega > 0\), \( \varphi |_\Gamma = 0\), and \(d\phi|_\Gamma\ne 0\). We study the geodesic flow of the metric \(G=g/\phi\). The \(G\)-distance from any point of \(\Omega\) to \(\Gamma\) is finite, hence, the geodesic flow is incomplete. Regularization of the flow in a neighborhood of \(\Gamma\) establishes a natural reflection law from \(\Gamma\). This leads to a certain (not quite standard) billiard problem in \(\Omega\).

DOI 10.1134/S106192084010047

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信