浅水方程的保正性和平衡良好的高阶紧凑有限差分方案

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Baifen Ren,Zhen Gao,Yaguang Gu,Shusen Xie, Xiangxiong Zhang
{"title":"浅水方程的保正性和平衡良好的高阶紧凑有限差分方案","authors":"Baifen Ren,Zhen Gao,Yaguang Gu,Shusen Xie, Xiangxiong Zhang","doi":"10.4208/cicp.oa-2023-0034","DOIUrl":null,"url":null,"abstract":"We construct a positivity-preserving and well-balanced high order accurate\nfinite difference scheme for solving shallow water equations under the fourth order\ncompact finite difference framework. The source term is rewritten to balance the flux\ngradient in steady state solutions. Under a suitable CFL condition, the proposed compact difference scheme satisfies weak monotonicity, i.e., the average water height defined by the weighted average of a three-points stencil stays non-negative in forward\nEuler time discretization. Thus, a positivity-preserving limiter can be used to enforce\nthe positivity of water height point values in a high order strong stability preserving Runge-Kutta method. A TVB limiter for compact finite difference scheme is also\nused to reduce numerical oscillations, without affecting well-balancedness and positivity. Numerical experiments verify that the proposed scheme is high-order accurate,\npositivity-preserving, well-balanced and free of numerical oscillations.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"120 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Positivity-Preserving and Well-Balanced High Order Compact Finite Difference Scheme for Shallow Water Equations\",\"authors\":\"Baifen Ren,Zhen Gao,Yaguang Gu,Shusen Xie, Xiangxiong Zhang\",\"doi\":\"10.4208/cicp.oa-2023-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a positivity-preserving and well-balanced high order accurate\\nfinite difference scheme for solving shallow water equations under the fourth order\\ncompact finite difference framework. The source term is rewritten to balance the flux\\ngradient in steady state solutions. Under a suitable CFL condition, the proposed compact difference scheme satisfies weak monotonicity, i.e., the average water height defined by the weighted average of a three-points stencil stays non-negative in forward\\nEuler time discretization. Thus, a positivity-preserving limiter can be used to enforce\\nthe positivity of water height point values in a high order strong stability preserving Runge-Kutta method. A TVB limiter for compact finite difference scheme is also\\nused to reduce numerical oscillations, without affecting well-balancedness and positivity. Numerical experiments verify that the proposed scheme is high-order accurate,\\npositivity-preserving, well-balanced and free of numerical oscillations.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0034\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在四阶紧凑有限差分框架下,我们构建了一种保正且平衡良好的高阶精确有限差分方案来求解浅水方程。源项被重写以平衡稳态解中的通量梯度。在合适的 CFL 条件下,所提出的紧凑差分方案满足弱单调性,即在正向尤勒时间离散化中,由三点模板加权平均定义的平均水高保持非负。因此,在高阶强稳定性保留 Runge-Kutta 方法中,可以使用正向保留限制器来加强水高点值的正向性。此外,还为紧凑有限差分方案设计了 TVB 限制器,以减少数值振荡,同时不影响均衡性和正定性。数值实验验证了所提出的方案具有高阶精确性、保正性、良好平衡性和无数值振荡性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Positivity-Preserving and Well-Balanced High Order Compact Finite Difference Scheme for Shallow Water Equations
We construct a positivity-preserving and well-balanced high order accurate finite difference scheme for solving shallow water equations under the fourth order compact finite difference framework. The source term is rewritten to balance the flux gradient in steady state solutions. Under a suitable CFL condition, the proposed compact difference scheme satisfies weak monotonicity, i.e., the average water height defined by the weighted average of a three-points stencil stays non-negative in forward Euler time discretization. Thus, a positivity-preserving limiter can be used to enforce the positivity of water height point values in a high order strong stability preserving Runge-Kutta method. A TVB limiter for compact finite difference scheme is also used to reduce numerical oscillations, without affecting well-balancedness and positivity. Numerical experiments verify that the proposed scheme is high-order accurate, positivity-preserving, well-balanced and free of numerical oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信