无 Lipschitz 空间和近似投影序列

IF 1.1 2区 数学 Q1 MATHEMATICS
Gilles Godefroy
{"title":"无 Lipschitz 空间和近似投影序列","authors":"Gilles Godefroy","doi":"10.1007/s43037-024-00332-2","DOIUrl":null,"url":null,"abstract":"<p>The Lipschitz-free space <span>\\({\\mathcal {F}}(M)\\)</span> has an F.D.D. when <i>M</i> is a separable <span>\\({\\mathcal {L}}_1\\)</span>-Banach space, or when <span>\\(M\\subset {\\mathbb {R}}^n\\)</span> is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the <span>\\((\\pi )\\)</span>-property in Lipschitz-free spaces is investigated. If <i>M</i> is an arbitrary metric space, then <span>\\({\\mathcal {F}}(M)\\)</span> has the <span>\\((\\pi )\\)</span>-property up to a universal logarithmic factor. It follows in particular that the <span>\\((\\pi )\\)</span>-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz-free spaces and approximating sequences of projections\",\"authors\":\"Gilles Godefroy\",\"doi\":\"10.1007/s43037-024-00332-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Lipschitz-free space <span>\\\\({\\\\mathcal {F}}(M)\\\\)</span> has an F.D.D. when <i>M</i> is a separable <span>\\\\({\\\\mathcal {L}}_1\\\\)</span>-Banach space, or when <span>\\\\(M\\\\subset {\\\\mathbb {R}}^n\\\\)</span> is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the <span>\\\\((\\\\pi )\\\\)</span>-property in Lipschitz-free spaces is investigated. If <i>M</i> is an arbitrary metric space, then <span>\\\\({\\\\mathcal {F}}(M)\\\\)</span> has the <span>\\\\((\\\\pi )\\\\)</span>-property up to a universal logarithmic factor. It follows in particular that the <span>\\\\((\\\\pi )\\\\)</span>-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00332-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00332-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当 M 是一个可分离的 \({\mathcal {L}}_1\)-巴纳赫空间时,或者当 \(M\subset {\mathbb {R}}^n\) 是一个有点规则的子集时,无 Lipschitz 空间 \({\mathcal {F}}(M)\) 具有 F.D.D.。本文研究了无 Lipschitz 空间中 Lipschitz 映射的扩展算子的存在与 \((\pi )\)-property 之间的相互作用。如果M是一个任意度量空间,那么({\mathcal {F}}(M)\) 具有直到一个通用对数因子的\((\pi )\)-属性。由此可见,直到对数因子的((\pi)\)属性并不意味着近似属性。本文还列出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz-free spaces and approximating sequences of projections

The Lipschitz-free space \({\mathcal {F}}(M)\) has an F.D.D. when M is a separable \({\mathcal {L}}_1\)-Banach space, or when \(M\subset {\mathbb {R}}^n\) is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the \((\pi )\)-property in Lipschitz-free spaces is investigated. If M is an arbitrary metric space, then \({\mathcal {F}}(M)\) has the \((\pi )\)-property up to a universal logarithmic factor. It follows in particular that the \((\pi )\)-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信