论与素数幂不相似的 Diophantine 不等式的例外集

Pub Date : 2024-03-19 DOI:10.1007/s10986-024-09624-4
Huafeng Liu, Rui Liu
{"title":"论与素数幂不相似的 Diophantine 不等式的例外集","authors":"Huafeng Liu, Rui Liu","doi":"10.1007/s10986-024-09624-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>, <i>λ</i><sub>5</sub> be nonzero real numbers, not all negative. Let <span>\\(\\mathfrak{V}\\)</span> be a <i>well-spaced</i> sequence. Assume that <i>λ</i><sub>2</sub>/<i>λ</i><sub>3</sub> is irrational and algebraic, and <i>δ &gt;</i> 0. Let <span>\\(E\\left(\\mathfrak{V},N,\\delta \\right)\\)</span> be the number of <span>\\(\\upsilon \\in \\mathfrak{V}\\)</span> with <span>\\(\\upsilon \\le N\\)</span> such that the Diophantine inequality <span>\\(\\left|{\\lambda }_{2}{p}_{2}^{2}+{\\lambda }_{3}{p}_{3}^{3}+{\\lambda }_{4}{p}_{4}^{4}+{\\lambda }_{5}{p}_{5}^{5}-\\upsilon \\right|&lt;{\\upsilon }^{-\\delta }\\)</span> has no solution in primes <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub>, <i>p</i><sub>4</sub>, <i>p</i><sub>5</sub>. In this paper, we prove that for any <span>\\(\\varepsilon &gt;0,E\\left(\\mathfrak{V},N,\\delta \\right)\\ll {N}^{1-19/378+2\\delta +\\varepsilon },\\)</span> which refines the previous result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exceptional set for Diophantine inequality with unlike powers of primes\",\"authors\":\"Huafeng Liu, Rui Liu\",\"doi\":\"10.1007/s10986-024-09624-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>, <i>λ</i><sub>5</sub> be nonzero real numbers, not all negative. Let <span>\\\\(\\\\mathfrak{V}\\\\)</span> be a <i>well-spaced</i> sequence. Assume that <i>λ</i><sub>2</sub>/<i>λ</i><sub>3</sub> is irrational and algebraic, and <i>δ &gt;</i> 0. Let <span>\\\\(E\\\\left(\\\\mathfrak{V},N,\\\\delta \\\\right)\\\\)</span> be the number of <span>\\\\(\\\\upsilon \\\\in \\\\mathfrak{V}\\\\)</span> with <span>\\\\(\\\\upsilon \\\\le N\\\\)</span> such that the Diophantine inequality <span>\\\\(\\\\left|{\\\\lambda }_{2}{p}_{2}^{2}+{\\\\lambda }_{3}{p}_{3}^{3}+{\\\\lambda }_{4}{p}_{4}^{4}+{\\\\lambda }_{5}{p}_{5}^{5}-\\\\upsilon \\\\right|&lt;{\\\\upsilon }^{-\\\\delta }\\\\)</span> has no solution in primes <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub>, <i>p</i><sub>4</sub>, <i>p</i><sub>5</sub>. In this paper, we prove that for any <span>\\\\(\\\\varepsilon &gt;0,E\\\\left(\\\\mathfrak{V},N,\\\\delta \\\\right)\\\\ll {N}^{1-19/378+2\\\\delta +\\\\varepsilon },\\\\)</span> which refines the previous result.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09624-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09624-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 λ2, λ3, λ4, λ5 为非零实数,且不全是负数。让 \(\mathfrak{V}\) 是一个间隔良好的序列。假设 λ2/λ3 是无理数和代数数,且 δ > 0。让 \(E(left(mathfrak{V},N、\右))是在(mathfrak{V},N, N)中具有(upsilon (le N))的(upsilon (le N))的个数,使得 Diophantine不等式 ((\left|{\lambda }_{2}{p}_{2}^{2}+{\lambda }_{3}{p}_{3}^{3}+{\lambda }_{4}{p}_{4}^{4}+{\lambda }_{5}{p}_{5}^{5}-\upsilon \right|<;{\upsilon }^{-\delta }\) 在素数 p2、p3、p4、p5 中无解。在本文中,我们证明了对于任何 \(\varepsilon >0,E\left(\mathfrak{V},N,\delta \right)\ll {N}^{1-19/378+2\delta +\varepsilon },\),这完善了之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the exceptional set for Diophantine inequality with unlike powers of primes

Let λ2, λ3, λ4, λ5 be nonzero real numbers, not all negative. Let \(\mathfrak{V}\) be a well-spaced sequence. Assume that λ2/λ3 is irrational and algebraic, and δ > 0. Let \(E\left(\mathfrak{V},N,\delta \right)\) be the number of \(\upsilon \in \mathfrak{V}\) with \(\upsilon \le N\) such that the Diophantine inequality \(\left|{\lambda }_{2}{p}_{2}^{2}+{\lambda }_{3}{p}_{3}^{3}+{\lambda }_{4}{p}_{4}^{4}+{\lambda }_{5}{p}_{5}^{5}-\upsilon \right|<{\upsilon }^{-\delta }\) has no solution in primes p2, p3, p4, p5. In this paper, we prove that for any \(\varepsilon >0,E\left(\mathfrak{V},N,\delta \right)\ll {N}^{1-19/378+2\delta +\varepsilon },\) which refines the previous result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信