{"title":"论与素数幂不相似的 Diophantine 不等式的例外集","authors":"Huafeng Liu, Rui Liu","doi":"10.1007/s10986-024-09624-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>, <i>λ</i><sub>5</sub> be nonzero real numbers, not all negative. Let <span>\\(\\mathfrak{V}\\)</span> be a <i>well-spaced</i> sequence. Assume that <i>λ</i><sub>2</sub>/<i>λ</i><sub>3</sub> is irrational and algebraic, and <i>δ ></i> 0. Let <span>\\(E\\left(\\mathfrak{V},N,\\delta \\right)\\)</span> be the number of <span>\\(\\upsilon \\in \\mathfrak{V}\\)</span> with <span>\\(\\upsilon \\le N\\)</span> such that the Diophantine inequality <span>\\(\\left|{\\lambda }_{2}{p}_{2}^{2}+{\\lambda }_{3}{p}_{3}^{3}+{\\lambda }_{4}{p}_{4}^{4}+{\\lambda }_{5}{p}_{5}^{5}-\\upsilon \\right|<{\\upsilon }^{-\\delta }\\)</span> has no solution in primes <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub>, <i>p</i><sub>4</sub>, <i>p</i><sub>5</sub>. In this paper, we prove that for any <span>\\(\\varepsilon >0,E\\left(\\mathfrak{V},N,\\delta \\right)\\ll {N}^{1-19/378+2\\delta +\\varepsilon },\\)</span> which refines the previous result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exceptional set for Diophantine inequality with unlike powers of primes\",\"authors\":\"Huafeng Liu, Rui Liu\",\"doi\":\"10.1007/s10986-024-09624-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>, <i>λ</i><sub>4</sub>, <i>λ</i><sub>5</sub> be nonzero real numbers, not all negative. Let <span>\\\\(\\\\mathfrak{V}\\\\)</span> be a <i>well-spaced</i> sequence. Assume that <i>λ</i><sub>2</sub>/<i>λ</i><sub>3</sub> is irrational and algebraic, and <i>δ ></i> 0. Let <span>\\\\(E\\\\left(\\\\mathfrak{V},N,\\\\delta \\\\right)\\\\)</span> be the number of <span>\\\\(\\\\upsilon \\\\in \\\\mathfrak{V}\\\\)</span> with <span>\\\\(\\\\upsilon \\\\le N\\\\)</span> such that the Diophantine inequality <span>\\\\(\\\\left|{\\\\lambda }_{2}{p}_{2}^{2}+{\\\\lambda }_{3}{p}_{3}^{3}+{\\\\lambda }_{4}{p}_{4}^{4}+{\\\\lambda }_{5}{p}_{5}^{5}-\\\\upsilon \\\\right|<{\\\\upsilon }^{-\\\\delta }\\\\)</span> has no solution in primes <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub>, <i>p</i><sub>4</sub>, <i>p</i><sub>5</sub>. In this paper, we prove that for any <span>\\\\(\\\\varepsilon >0,E\\\\left(\\\\mathfrak{V},N,\\\\delta \\\\right)\\\\ll {N}^{1-19/378+2\\\\delta +\\\\varepsilon },\\\\)</span> which refines the previous result.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09624-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09624-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the exceptional set for Diophantine inequality with unlike powers of primes
Let λ2, λ3, λ4, λ5 be nonzero real numbers, not all negative. Let \(\mathfrak{V}\) be a well-spaced sequence. Assume that λ2/λ3 is irrational and algebraic, and δ > 0. Let \(E\left(\mathfrak{V},N,\delta \right)\) be the number of \(\upsilon \in \mathfrak{V}\) with \(\upsilon \le N\) such that the Diophantine inequality \(\left|{\lambda }_{2}{p}_{2}^{2}+{\lambda }_{3}{p}_{3}^{3}+{\lambda }_{4}{p}_{4}^{4}+{\lambda }_{5}{p}_{5}^{5}-\upsilon \right|<{\upsilon }^{-\delta }\) has no solution in primes p2, p3, p4, p5. In this paper, we prove that for any \(\varepsilon >0,E\left(\mathfrak{V},N,\delta \right)\ll {N}^{1-19/378+2\delta +\varepsilon },\) which refines the previous result.