choquet 积分、hausdorff 内容和分式算子

Pub Date : 2024-03-19 DOI:10.1017/s000497272400011x
NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA
{"title":"choquet 积分、hausdorff 内容和分式算子","authors":"NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA","doi":"10.1017/s000497272400011x","DOIUrl":null,"url":null,"abstract":"We show that the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline1.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline2.png\" /> <jats:tex-math> $0&lt;\\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline3.png\" /> <jats:tex-math> $M_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline4.png\" /> <jats:tex-math> $0\\le \\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline5.png\" /> <jats:tex-math> $M_\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, <jats:italic>Georgian Math. J.</jats:italic>18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline6.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are essentially new.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS\",\"authors\":\"NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA\",\"doi\":\"10.1017/s000497272400011x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline1.png\\\" /> <jats:tex-math> $I_{\\\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline2.png\\\" /> <jats:tex-math> $0&lt;\\\\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline3.png\\\" /> <jats:tex-math> $M_{\\\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline4.png\\\" /> <jats:tex-math> $0\\\\le \\\\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline5.png\\\" /> <jats:tex-math> $M_\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, <jats:italic>Georgian Math. J.</jats:italic>18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400011X_inline6.png\\\" /> <jats:tex-math> $I_{\\\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are essentially new.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272400011x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400011x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了分数积分算子 $I_{\alpha }$ , $0<\alpha <n$ 和分数最大算子 $M_{\alpha }$ , $0\le \alpha <n$ 在弱 Choquet 空间上关于 Hausdorff 内容是有界的。我们还在 Choquet-Morrey 空间上研究了这些算子。小数最大算子 $M_\alpha $ 的结果是唐['Choquet 积分、加权 Hausdorff 内容和最大算子',Georgian Math.J.18(3)(2011),587-596] 以及亚当斯和奥罗比特及韦尔德拉的早期工作。分数积分算子 $I_{\alpha }$ 的结果本质上是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS
We show that the fractional integral operator $I_{\alpha }$ , $0<\alpha <n$ , and the fractional maximal operator $M_{\alpha }$ , $0\le \alpha <n$ , are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator $M_\alpha $ are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, Georgian Math. J.18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator $I_{\alpha }$ are essentially new.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信