{"title":"湖泊生态系统面临的挑战:气候变化引发的热结构变化","authors":"Yin Zhang, Jian Shen, Liwei He, Jimeng Feng, Lina Chi, Xinze Wang","doi":"10.3390/w16060888","DOIUrl":null,"url":null,"abstract":"Human activities, global warming, frequent extreme weather events, and changes in atmospheric composition affect the solar radiation reaching the Earth’s surface, affect mass and heat transfer at the air–water interface, and induce oscillations in wind-driven internal waves. This leads to changes in the spatiotemporal characteristics of thermal stratification in lakes, altering lake circulation patterns and vertical mass transfer. However, thermal stratification structures are often overlooked. The intensification of lake thermal stratification due to warming may lead to increased release of bottom pollutants, spreading through the dynamic behavior of the thermocline to the epilimnion. Moreover, the increased heat storage is beneficial for the growth and development of certain phytoplankton, resulting in rapid transitions of the original steady state of lakes. Consequently, water quality deterioration, ecological degradation, and declining biodiversity may occur. Conventional surface water monitoring may not provide comprehensive, accurate, and timely assessments. Model simulations can better predict future thermal stratification behaviors, reducing financial burdens, providing more refined assessments, and thus preventing subsequent environmental issues.","PeriodicalId":23788,"journal":{"name":"Water","volume":"58 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change\",\"authors\":\"Yin Zhang, Jian Shen, Liwei He, Jimeng Feng, Lina Chi, Xinze Wang\",\"doi\":\"10.3390/w16060888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activities, global warming, frequent extreme weather events, and changes in atmospheric composition affect the solar radiation reaching the Earth’s surface, affect mass and heat transfer at the air–water interface, and induce oscillations in wind-driven internal waves. This leads to changes in the spatiotemporal characteristics of thermal stratification in lakes, altering lake circulation patterns and vertical mass transfer. However, thermal stratification structures are often overlooked. The intensification of lake thermal stratification due to warming may lead to increased release of bottom pollutants, spreading through the dynamic behavior of the thermocline to the epilimnion. Moreover, the increased heat storage is beneficial for the growth and development of certain phytoplankton, resulting in rapid transitions of the original steady state of lakes. Consequently, water quality deterioration, ecological degradation, and declining biodiversity may occur. Conventional surface water monitoring may not provide comprehensive, accurate, and timely assessments. Model simulations can better predict future thermal stratification behaviors, reducing financial burdens, providing more refined assessments, and thus preventing subsequent environmental issues.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16060888\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16060888","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Challenge to Lake Ecosystems: Changes in Thermal Structure Triggered by Climate Change
Human activities, global warming, frequent extreme weather events, and changes in atmospheric composition affect the solar radiation reaching the Earth’s surface, affect mass and heat transfer at the air–water interface, and induce oscillations in wind-driven internal waves. This leads to changes in the spatiotemporal characteristics of thermal stratification in lakes, altering lake circulation patterns and vertical mass transfer. However, thermal stratification structures are often overlooked. The intensification of lake thermal stratification due to warming may lead to increased release of bottom pollutants, spreading through the dynamic behavior of the thermocline to the epilimnion. Moreover, the increased heat storage is beneficial for the growth and development of certain phytoplankton, resulting in rapid transitions of the original steady state of lakes. Consequently, water quality deterioration, ecological degradation, and declining biodiversity may occur. Conventional surface water monitoring may not provide comprehensive, accurate, and timely assessments. Model simulations can better predict future thermal stratification behaviors, reducing financial burdens, providing more refined assessments, and thus preventing subsequent environmental issues.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.