A. R. Tsygankova, T. Ya. Guselnikova, N. I. Petrova, F. V. Yatsunov
{"title":"纯锑制备的分析控制","authors":"A. R. Tsygankova, T. Ya. Guselnikova, N. I. Petrova, F. V. Yatsunov","doi":"10.1134/S0020168523120099","DOIUrl":null,"url":null,"abstract":"<p>A multielement inductively coupled plasma atomic emission spectrometry (ICP-AES) technique has been proposed for high-speed monitoring of the preparation of pure antimony, and analytical lines of analytes with the weakest spectral effects have been chosen. We have studied the effect of matrix component concentration (5 to 40 g/L) on the analytical signals of impurity elements. Changes in excitation conditions in the plasma at a varied antimony concentration in solution and varied ICP power have been assessed using the ICP robustness. The robustness was evaluated from the intensity ratio of the magnesium ionic and atomic lines. The presence of 40 g/L of antimony in solution has been shown to reduce the ICP robustness by up to 5%. The adequacy of the proposed technique has been confirmed by the standard addition method and comparison with results obtained by an independent method. The proposed technique for analysis of antimony allows one to determine 56 impurity elements with detection limits from <i>n</i> × 10<sup>–7</sup> to <i>n</i> × 10<sup>–4</sup> wt %.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"59 12","pages":"1326 - 1332"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Control over the Preparation of Pure Antimony\",\"authors\":\"A. R. Tsygankova, T. Ya. Guselnikova, N. I. Petrova, F. V. Yatsunov\",\"doi\":\"10.1134/S0020168523120099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multielement inductively coupled plasma atomic emission spectrometry (ICP-AES) technique has been proposed for high-speed monitoring of the preparation of pure antimony, and analytical lines of analytes with the weakest spectral effects have been chosen. We have studied the effect of matrix component concentration (5 to 40 g/L) on the analytical signals of impurity elements. Changes in excitation conditions in the plasma at a varied antimony concentration in solution and varied ICP power have been assessed using the ICP robustness. The robustness was evaluated from the intensity ratio of the magnesium ionic and atomic lines. The presence of 40 g/L of antimony in solution has been shown to reduce the ICP robustness by up to 5%. The adequacy of the proposed technique has been confirmed by the standard addition method and comparison with results obtained by an independent method. The proposed technique for analysis of antimony allows one to determine 56 impurity elements with detection limits from <i>n</i> × 10<sup>–7</sup> to <i>n</i> × 10<sup>–4</sup> wt %.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"59 12\",\"pages\":\"1326 - 1332\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020168523120099\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168523120099","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical Control over the Preparation of Pure Antimony
A multielement inductively coupled plasma atomic emission spectrometry (ICP-AES) technique has been proposed for high-speed monitoring of the preparation of pure antimony, and analytical lines of analytes with the weakest spectral effects have been chosen. We have studied the effect of matrix component concentration (5 to 40 g/L) on the analytical signals of impurity elements. Changes in excitation conditions in the plasma at a varied antimony concentration in solution and varied ICP power have been assessed using the ICP robustness. The robustness was evaluated from the intensity ratio of the magnesium ionic and atomic lines. The presence of 40 g/L of antimony in solution has been shown to reduce the ICP robustness by up to 5%. The adequacy of the proposed technique has been confirmed by the standard addition method and comparison with results obtained by an independent method. The proposed technique for analysis of antimony allows one to determine 56 impurity elements with detection limits from n × 10–7 to n × 10–4 wt %.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.