{"title":"非简单连接流形上的 Floquet-Bloch 函数、Aharonov-Bohm 通量和浸没曲面的保角不变式","authors":"I. A. Taimanov","doi":"arxiv-2403.11161","DOIUrl":null,"url":null,"abstract":"Spectral (Bloch) varieties of multidimensional differential operators on\nnon-simply connected manifolds are defined. In their terms it is given a\ndescription of the analytical dependence of the spectra of magnetic Laplacians\non non-simply connected manifolds on the values of the Aharonov-Bohm fluxes and\na construction of analogues of spectral curves for two-dimensional Dirac\noperators on Riemann surfaces and, thereby, new conformal invariants of\nimmersions of surfaces into 3- and 4-dimensional Euclidean spaces.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floquet-Bloch functions on non-simply connected manifolds, the Aharonov-Bohm fluxes, and conformal invariants of immersed surfaces\",\"authors\":\"I. A. Taimanov\",\"doi\":\"arxiv-2403.11161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral (Bloch) varieties of multidimensional differential operators on\\nnon-simply connected manifolds are defined. In their terms it is given a\\ndescription of the analytical dependence of the spectra of magnetic Laplacians\\non non-simply connected manifolds on the values of the Aharonov-Bohm fluxes and\\na construction of analogues of spectral curves for two-dimensional Dirac\\noperators on Riemann surfaces and, thereby, new conformal invariants of\\nimmersions of surfaces into 3- and 4-dimensional Euclidean spaces.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.11161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.11161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Floquet-Bloch functions on non-simply connected manifolds, the Aharonov-Bohm fluxes, and conformal invariants of immersed surfaces
Spectral (Bloch) varieties of multidimensional differential operators on
non-simply connected manifolds are defined. In their terms it is given a
description of the analytical dependence of the spectra of magnetic Laplacians
on non-simply connected manifolds on the values of the Aharonov-Bohm fluxes and
a construction of analogues of spectral curves for two-dimensional Dirac
operators on Riemann surfaces and, thereby, new conformal invariants of
immersions of surfaces into 3- and 4-dimensional Euclidean spaces.