通过轨距变换和(双重)修正可积分方程简化微分差分方程的拉克斯对

Sergei Igonin
{"title":"通过轨距变换和(双重)修正可积分方程简化微分差分方程的拉克斯对","authors":"Sergei Igonin","doi":"arxiv-2403.12022","DOIUrl":null,"url":null,"abstract":"Matrix differential-difference Lax pairs play an essential role in the theory\nof integrable nonlinear differential-difference equations. We present\nsufficient conditions for the possibility to simplify such a Lax pair by matrix\ngauge transformations. Furthermore, we describe a procedure for such a\nsimplification and present applications of it to constructing new integrable\nequations connected by (non-invertible) discrete substitutions to known\nequations with Lax pairs. Suppose that one has three (possibly multicomponent) equations $E$, $E_1$,\n$E_2$, a discrete substitution from $E_1$ to $E$, and a discrete substitution\nfrom $E_2$ to $E_1$. Then $E_1$ and $E_2$ can be called a modified version of\n$E$ and a doubly modified version of $E$, respectively. We demonstrate how the\nabove-mentioned procedure helps (in the considered examples) to construct\nmodified and doubly modified versions of a given equation possessing a Lax pair\nsatisfying certain conditions. The considered examples include scalar equations of Itoh-Narita-Bogoyavlensky\ntype and $2$-component equations related to the Toda lattice. Several new\nintegrable equations and discrete substitutions are presented.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplifications of Lax pairs for differential-difference equations by gauge transformations and (doubly) modified integrable equations\",\"authors\":\"Sergei Igonin\",\"doi\":\"arxiv-2403.12022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix differential-difference Lax pairs play an essential role in the theory\\nof integrable nonlinear differential-difference equations. We present\\nsufficient conditions for the possibility to simplify such a Lax pair by matrix\\ngauge transformations. Furthermore, we describe a procedure for such a\\nsimplification and present applications of it to constructing new integrable\\nequations connected by (non-invertible) discrete substitutions to known\\nequations with Lax pairs. Suppose that one has three (possibly multicomponent) equations $E$, $E_1$,\\n$E_2$, a discrete substitution from $E_1$ to $E$, and a discrete substitution\\nfrom $E_2$ to $E_1$. Then $E_1$ and $E_2$ can be called a modified version of\\n$E$ and a doubly modified version of $E$, respectively. We demonstrate how the\\nabove-mentioned procedure helps (in the considered examples) to construct\\nmodified and doubly modified versions of a given equation possessing a Lax pair\\nsatisfying certain conditions. The considered examples include scalar equations of Itoh-Narita-Bogoyavlensky\\ntype and $2$-component equations related to the Toda lattice. Several new\\nintegrable equations and discrete substitutions are presented.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.12022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.12022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵微分-差分 Lax 对在可积分非线性微分-差分方程理论中起着至关重要的作用。我们提出了通过矩阵几何变换简化这种 Lax 对的充分条件。此外,我们还描述了这种简化的程序,并介绍了它在通过(不可逆转的)离散置换构造与具有 Lax 对的已知方程相连的新可积分方程中的应用。假设有三个(可能是多分量的)方程 $E$,$E_1$,$E_2$,一个从 $E_1$ 到 $E$ 的离散替换,以及一个从 $E_2$ 到 $E_1$ 的离散替换。那么 $E_1$ 和 $E_2$ 分别可以称为 $E$ 的修正版和 $E$ 的双重修正版。我们将演示上述过程如何(在所考虑的例子中)帮助构建满足特定条件的给定方程的修正版和双重修正版,这些给定方程具有 Lax 对。所考虑的例子包括伊藤-纳里塔-波哥雅夫伦斯基类型的标量方程和与户田晶格有关的 2 美元分量方程。此外,还介绍了几个新的可积分方程和离散置换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplifications of Lax pairs for differential-difference equations by gauge transformations and (doubly) modified integrable equations
Matrix differential-difference Lax pairs play an essential role in the theory of integrable nonlinear differential-difference equations. We present sufficient conditions for the possibility to simplify such a Lax pair by matrix gauge transformations. Furthermore, we describe a procedure for such a simplification and present applications of it to constructing new integrable equations connected by (non-invertible) discrete substitutions to known equations with Lax pairs. Suppose that one has three (possibly multicomponent) equations $E$, $E_1$, $E_2$, a discrete substitution from $E_1$ to $E$, and a discrete substitution from $E_2$ to $E_1$. Then $E_1$ and $E_2$ can be called a modified version of $E$ and a doubly modified version of $E$, respectively. We demonstrate how the above-mentioned procedure helps (in the considered examples) to construct modified and doubly modified versions of a given equation possessing a Lax pair satisfying certain conditions. The considered examples include scalar equations of Itoh-Narita-Bogoyavlensky type and $2$-component equations related to the Toda lattice. Several new integrable equations and discrete substitutions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信