{"title":"可扩展域上小林--福克斯度量的加权边界极限","authors":"Debaprasanna Kar","doi":"10.1007/s10476-024-00013-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted boundary limits of the Kobayashi--Fuks metric on h-extendible domains\",\"authors\":\"Debaprasanna Kar\",\"doi\":\"10.1007/s10476-024-00013-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00013-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00013-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们研究了小林--福克斯公设在 h 可扩展域类上的边界行为。在此,我们借助一些最大域函数推导出小林--福克斯度量及其黎曼体元的非切线边界渐近线,然后利用它们在 h 可扩展局部模型上的稳定性结果。
Weighted boundary limits of the Kobayashi--Fuks metric on h-extendible domains
We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.