可扩展域上小林--福克斯度量的加权边界极限

IF 0.6 3区 数学 Q3 MATHEMATICS
Debaprasanna Kar
{"title":"可扩展域上小林--福克斯度量的加权边界极限","authors":"Debaprasanna Kar","doi":"10.1007/s10476-024-00013-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted boundary limits of the Kobayashi--Fuks metric on h-extendible domains\",\"authors\":\"Debaprasanna Kar\",\"doi\":\"10.1007/s10476-024-00013-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00013-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00013-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了小林--福克斯公设在 h 可扩展域类上的边界行为。在此,我们借助一些最大域函数推导出小林--福克斯度量及其黎曼体元的非切线边界渐近线,然后利用它们在 h 可扩展局部模型上的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted boundary limits of the Kobayashi--Fuks metric on h-extendible domains

We study the boundary behavior of the Kobayashi--Fuks metric on the class of h-extendible domains. Here, we derive the nontangential boundary asymptotics of the Kobayashi--Fuks metric and its Riemannian volume element by the help of some maximal domain functions and then using their stability results on h-extendible local models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信