无穷图上的内万林纳理论

Pub Date : 2024-03-18 DOI:10.1007/s40315-024-00530-x
Atsushi Atsuji, Hiroshi Kaneko
{"title":"无穷图上的内万林纳理论","authors":"Atsushi Atsuji, Hiroshi Kaneko","doi":"10.1007/s40315-024-00530-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we explore a generalization of one-dimensional tropical Nevanlinna theory developed by Halburd &amp; Southall and Laine &amp; Toghe for a scheme on general locally finite graphs. We first give a probabilistic interpretation of a fundamental observation in one-dimensional tropical Nevanlinna theory on the graph with countably infinitely many vertices of degree two, aiming at its extension in terms of one-dimensional Brownian motion. A counterpart of Lemma on the logarithmic derivative in the classical Nevanlinna theory was proved by Halburd and Southall (cf. Int. Math. Res. Not. 2009:887–911, 2009, https://doi.org/10.1093/imrn/rnn150). Taking advantage of the stochastic analytical interpretation, we prove an analogous result to their lemma on the logarithmic derivative on infinite graphs admitting tree structure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nevanlinna Theory on Infinite Graphs\",\"authors\":\"Atsushi Atsuji, Hiroshi Kaneko\",\"doi\":\"10.1007/s40315-024-00530-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we explore a generalization of one-dimensional tropical Nevanlinna theory developed by Halburd &amp; Southall and Laine &amp; Toghe for a scheme on general locally finite graphs. We first give a probabilistic interpretation of a fundamental observation in one-dimensional tropical Nevanlinna theory on the graph with countably infinitely many vertices of degree two, aiming at its extension in terms of one-dimensional Brownian motion. A counterpart of Lemma on the logarithmic derivative in the classical Nevanlinna theory was proved by Halburd and Southall (cf. Int. Math. Res. Not. 2009:887–911, 2009, https://doi.org/10.1093/imrn/rnn150). Taking advantage of the stochastic analytical interpretation, we prove an analogous result to their lemma on the logarithmic derivative on infinite graphs admitting tree structure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00530-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00530-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了哈尔伯德-索索尔(Halburd & Southall)和莱恩-托格(Laine & Toghe)针对一般局部有限图上的方案提出的一维热带内万林纳理论的广义。我们首先给出了一维热带内万林那理论中关于具有可数无限多个顶点的二度图的一个基本观察结果的概率解释,旨在用一维布朗运动来扩展它。哈尔伯德和索索尔证明了经典内万林纳理论中关于对数导数的 Lemma(参见 Int.Math.Res.2009:887-911, 2009, https://doi.org/10.1093/imrn/rnn150)。利用随机分析解释的优势,我们证明了他们关于无限图上对数导数的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nevanlinna Theory on Infinite Graphs

In this paper, we explore a generalization of one-dimensional tropical Nevanlinna theory developed by Halburd & Southall and Laine & Toghe for a scheme on general locally finite graphs. We first give a probabilistic interpretation of a fundamental observation in one-dimensional tropical Nevanlinna theory on the graph with countably infinitely many vertices of degree two, aiming at its extension in terms of one-dimensional Brownian motion. A counterpart of Lemma on the logarithmic derivative in the classical Nevanlinna theory was proved by Halburd and Southall (cf. Int. Math. Res. Not. 2009:887–911, 2009, https://doi.org/10.1093/imrn/rnn150). Taking advantage of the stochastic analytical interpretation, we prove an analogous result to their lemma on the logarithmic derivative on infinite graphs admitting tree structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信