斯特恩菲尔德定理的简单证明

IF 0.5 3区 数学 Q3 MATHEMATICS
S. Dzhenzher
{"title":"斯特恩菲尔德定理的简单证明","authors":"S. Dzhenzher","doi":"10.1142/s1793525324500080","DOIUrl":null,"url":null,"abstract":"<p>In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> is basic if any continuous function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> could be represented as the sum of compositions of continuous functions <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> and projections to the coordinate axes.</p><p>The definition of a Sternfeld array is presented in this paper.</p><p><b>Sternfeld’s Arrays Theorem.</b><i>If a closed bounded subset</i><span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span><span></span><i> contains Sternfeld arrays of arbitrary large size then</i><span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span><i> is not basic</i>.</p><p>The paper provides a simpler proof of this theorem.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"111 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simpler proof of Sternfeld’s Theorem\",\"authors\":\"S. Dzhenzher\",\"doi\":\"10.1142/s1793525324500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> is basic if any continuous function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> could be represented as the sum of compositions of continuous functions <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> and projections to the coordinate axes.</p><p>The definition of a Sternfeld array is presented in this paper.</p><p><b>Sternfeld’s Arrays Theorem.</b><i>If a closed bounded subset</i><span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span><span></span><i> contains Sternfeld arrays of arbitrary large size then</i><span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span><i> is not basic</i>.</p><p>The paper provides a simpler proof of this theorem.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525324500080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在斯特恩费尔德关于科尔莫戈罗夫叠加定理的研究中,出现了基本集和某种数组的组合几何概念。如果任何连续函数 X→ℝ 都可以表示为连续函数 ℝ→ℝ 的组合和对坐标轴的投影,那么子集 X⊂ℝn 就是基本集。斯特恩费尔德数组定理.如果一个封闭的有界子集X⊂ℝ2n包含任意大的斯特恩费尔德数组,那么X不是基本的.本文提供了这个定理的一个更简单的证明.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simpler proof of Sternfeld’s Theorem

In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset Xn is basic if any continuous function X could be represented as the sum of compositions of continuous functions and projections to the coordinate axes.

The definition of a Sternfeld array is presented in this paper.

Sternfeld’s Arrays Theorem.If a closed bounded subsetX2n contains Sternfeld arrays of arbitrary large size thenX is not basic.

The paper provides a simpler proof of this theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信