{"title":"斯特恩菲尔德定理的简单证明","authors":"S. Dzhenzher","doi":"10.1142/s1793525324500080","DOIUrl":null,"url":null,"abstract":"<p>In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> is basic if any continuous function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> could be represented as the sum of compositions of continuous functions <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> and projections to the coordinate axes.</p><p>The definition of a Sternfeld array is presented in this paper.</p><p><b>Sternfeld’s Arrays Theorem.</b><i>If a closed bounded subset</i><span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span><span></span><i> contains Sternfeld arrays of arbitrary large size then</i><span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span><i> is not basic</i>.</p><p>The paper provides a simpler proof of this theorem.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simpler proof of Sternfeld’s Theorem\",\"authors\":\"S. Dzhenzher\",\"doi\":\"10.1142/s1793525324500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> is basic if any continuous function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> could be represented as the sum of compositions of continuous functions <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> and projections to the coordinate axes.</p><p>The definition of a Sternfeld array is presented in this paper.</p><p><b>Sternfeld’s Arrays Theorem.</b><i>If a closed bounded subset</i><span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo>⊂</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span><span></span><i> contains Sternfeld arrays of arbitrary large size then</i><span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span><i> is not basic</i>.</p><p>The paper provides a simpler proof of this theorem.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525324500080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In Sternfeld’s work on Kolmogorov’s Superposition Theorem appeared the combinatorial–geometric notion of a basic set and a certain kind of arrays. A subset is basic if any continuous function could be represented as the sum of compositions of continuous functions and projections to the coordinate axes.
The definition of a Sternfeld array is presented in this paper.
Sternfeld’s Arrays Theorem.If a closed bounded subset contains Sternfeld arrays of arbitrary large size then is not basic.
The paper provides a simpler proof of this theorem.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.