表面填充系统

IF 0.5 3区 数学 Q3 MATHEMATICS
Shiv Parsad, Bidyut Sanki
{"title":"表面填充系统","authors":"Shiv Parsad, Bidyut Sanki","doi":"10.1142/s1793525324500055","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> be a closed orientable surface of genus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>. A set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> of pairwise non-homotopic simple closed curves on <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> is called a <i>filling system</i> or simply be <i>filling</i> of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>, if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo stretchy=\"false\">∖</mo><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> is a disjoint union of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi></math></span><span></span> topological discs for some <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>≥</mo><mn>1</mn></math></span><span></span>. A filling system is called <i>minimally intersecting</i>, if the total number of intersection points of the curves is minimum, or equivalently <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><mn>1</mn></math></span><span></span>. The <i>size</i> of a filling system is defined as the number of its elements. We prove that the maximum possible size of a minimally intersecting filling system is <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>g</mi></math></span><span></span>. Next, we show that for <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn><mstyle><mtext> and </mtext></mstyle><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>2</mn><mi>g</mi></math></span><span></span> with <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>g</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo><mo>≠</mo><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, there exists a minimally intersecting filling system on <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> of size <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>. Furthermore, we study geometric intersection number of curves in a minimally intersecting filling system. For <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we show that for a minimally intersecting filling system <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span> of size <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>, the <i>geometric intersection numbers</i> satisfy <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo>max</mo><mo stretchy=\"false\">{</mo><mi>i</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\"false\">}</mo><mo>≤</mo><mn>2</mn><mi>g</mi><mo stretchy=\"false\">−</mo><mi>s</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, and for each such <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> there exists a minimally intersecting filling system <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> such that <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mo>max</mo><mo stretchy=\"false\">{</mo><mi>i</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\"false\">}</mo><mo>=</mo><mn>2</mn><mi>g</mi><mo stretchy=\"false\">−</mo><mi>s</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filling systems on surfaces\",\"authors\":\"Shiv Parsad, Bidyut Sanki\",\"doi\":\"10.1142/s1793525324500055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> be a closed orientable surface of genus <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span>. A set <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ω</mi><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> of pairwise non-homotopic simple closed curves on <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> is called a <i>filling system</i> or simply be <i>filling</i> of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>, if <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo stretchy=\\\"false\\\">∖</mo><mi mathvariant=\\\"normal\\\">Ω</mi></math></span><span></span> is a disjoint union of <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi></math></span><span></span> topological discs for some <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>≥</mo><mn>1</mn></math></span><span></span>. A filling system is called <i>minimally intersecting</i>, if the total number of intersection points of the curves is minimum, or equivalently <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>=</mo><mn>1</mn></math></span><span></span>. The <i>size</i> of a filling system is defined as the number of its elements. We prove that the maximum possible size of a minimally intersecting filling system is <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>g</mi></math></span><span></span>. Next, we show that for <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>≥</mo><mn>2</mn><mstyle><mtext> and </mtext></mstyle><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>2</mn><mi>g</mi></math></span><span></span> with <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>g</mi><mo>,</mo><mi>s</mi><mo stretchy=\\\"false\\\">)</mo><mo>≠</mo><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, there exists a minimally intersecting filling system on <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> of size <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>. Furthermore, we study geometric intersection number of curves in a minimally intersecting filling system. For <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we show that for a minimally intersecting filling system <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ω</mi></math></span><span></span> of size <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>, the <i>geometric intersection numbers</i> satisfy <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>max</mo><mo stretchy=\\\"false\\\">{</mo><mi>i</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\\\"false\\\">}</mo><mo>≤</mo><mn>2</mn><mi>g</mi><mo stretchy=\\\"false\\\">−</mo><mi>s</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></math></span><span></span>, and for each such <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span> there exists a minimally intersecting filling system <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ω</mi><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> such that <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>max</mo><mo stretchy=\\\"false\\\">{</mo><mi>i</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>|</mo><mi>i</mi><mo>≠</mo><mi>j</mi><mo stretchy=\\\"false\\\">}</mo><mo>=</mo><mn>2</mn><mi>g</mi><mo stretchy=\\\"false\\\">−</mo><mi>s</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></math></span><span></span>.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525324500055\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 Fg∖Ω 是某个 b≥1 的 b 个拓扑圆盘的不相交联盟,则 Fg 上的一对非同调简单闭合曲线集合 Ω={γ1,...,γs} 称为填充系统或简称为 Fg 的填充。如果曲线的交点总数最小,或等价于 b=1,则填充系统称为最小相交。填充系统的大小定义为其元素的个数。我们证明最小相交填充系统的最大可能大小为 2g。接着,我们证明了对于 g≥2 且 2≤s≤2g 且 (g,s)≠(2,2) 的情况,在 Fg 上存在一个大小为 s 的最小相交填充系统。对于 g≥2,我们证明了对于大小为 s 的最小相交填充系统 Ω,几何相交数满足 max{i(γi,γj)|i≠j}≤2g-s+1,并且对于每个这样的 s,存在一个最小相交填充系统 Ω={γ1,...,γs},使得 max{i(γi,γj)|i≠j}=2g-s+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filling systems on surfaces

Let Fg be a closed orientable surface of genus g. A set Ω={γ1,,γs} of pairwise non-homotopic simple closed curves on Fg is called a filling system or simply be filling of Fg, if FgΩ is a disjoint union of b topological discs for some b1. A filling system is called minimally intersecting, if the total number of intersection points of the curves is minimum, or equivalently b=1. The size of a filling system is defined as the number of its elements. We prove that the maximum possible size of a minimally intersecting filling system is 2g. Next, we show that for g2 and 2s2g with (g,s)(2,2), there exists a minimally intersecting filling system on Fg of size s. Furthermore, we study geometric intersection number of curves in a minimally intersecting filling system. For g2, we show that for a minimally intersecting filling system Ω of size s, the geometric intersection numbers satisfy max{i(γi,γj)|ij}2gs+1, and for each such s there exists a minimally intersecting filling system Ω={γ1,,γs} such that max{i(γi,γj)|ij}=2gs+1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信