Nhuan N. Doan, Ha T. Nguyen, Luan T. Nguyen, Lam D. Tran, Tuan D. Phan, Tien A. Nguyen, Linh T. T. Nguyen
{"title":"生物炭催化剂:植物修复中植物生物质的一种潜在处理方式","authors":"Nhuan N. Doan, Ha T. Nguyen, Luan T. Nguyen, Lam D. Tran, Tuan D. Phan, Tien A. Nguyen, Linh T. T. Nguyen","doi":"10.1515/pac-2024-0105","DOIUrl":null,"url":null,"abstract":"In this study, the plant biomass from the phytoremediation was recovered, prepared, and investigated catalytic ability for the α-pinene isomerization. The results show that the Fe_loaded AAL biochar can catalyze the isomerization of a-pinene, with the α-pinene conversion of 90.5 % and the selectivities for monocyclic terpenes (limonene, terpinolene and γ-terpinene) of 57.1 %, bicyclic terpene (camphene) of 24.6 %. Iron in the plant biomass from phytoremediation is considered a decisive factor that heightened the conversion of α-pinene and the yield of isomers. This research has initially opened up a new application for the plant biomass absorbing heavy metal from the phytoremediation stage to resolve contaminants efficiently.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation\",\"authors\":\"Nhuan N. Doan, Ha T. Nguyen, Luan T. Nguyen, Lam D. Tran, Tuan D. Phan, Tien A. Nguyen, Linh T. T. Nguyen\",\"doi\":\"10.1515/pac-2024-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the plant biomass from the phytoremediation was recovered, prepared, and investigated catalytic ability for the α-pinene isomerization. The results show that the Fe_loaded AAL biochar can catalyze the isomerization of a-pinene, with the α-pinene conversion of 90.5 % and the selectivities for monocyclic terpenes (limonene, terpinolene and γ-terpinene) of 57.1 %, bicyclic terpene (camphene) of 24.6 %. Iron in the plant biomass from phytoremediation is considered a decisive factor that heightened the conversion of α-pinene and the yield of isomers. This research has initially opened up a new application for the plant biomass absorbing heavy metal from the phytoremediation stage to resolve contaminants efficiently.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2024-0105\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0105","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation
In this study, the plant biomass from the phytoremediation was recovered, prepared, and investigated catalytic ability for the α-pinene isomerization. The results show that the Fe_loaded AAL biochar can catalyze the isomerization of a-pinene, with the α-pinene conversion of 90.5 % and the selectivities for monocyclic terpenes (limonene, terpinolene and γ-terpinene) of 57.1 %, bicyclic terpene (camphene) of 24.6 %. Iron in the plant biomass from phytoremediation is considered a decisive factor that heightened the conversion of α-pinene and the yield of isomers. This research has initially opened up a new application for the plant biomass absorbing heavy metal from the phytoremediation stage to resolve contaminants efficiently.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.