Hua Sha, Rajae Haouari, Mohit Kumar Singh, Evita Papazikou, Mohammed Quddus, Amna Chaudhry, Pete Thomas, Andrew Morris
{"title":"在合作、互联和自动化时代,路边停车法规如何影响交通、安全和环境?","authors":"Hua Sha, Rajae Haouari, Mohit Kumar Singh, Evita Papazikou, Mohammed Quddus, Amna Chaudhry, Pete Thomas, Andrew Morris","doi":"10.1186/s12544-023-00628-8","DOIUrl":null,"url":null,"abstract":"On-street parking is a commonly used form of parking facility as part of transportation infrastructure. However, the emergence of connected and autonomous vehicles (CAVs) is expected to significantly impact parking in the future. This study aims to investigate the impacts of on-street parking regulations for CAVs on the environment, safety and mobility in mixed traffic fleets. To achieve this goal, a calibrated and validated network model of the city of Leicester, UK, was selected to test the implementation of CAVs under various deployment scenarios. The results revealed that replacing on-street parking with driving lanes, cycle lanes, and public spaces can lead to better traffic performance. Specifically, there could be a 27–30% reduction in travel time, a 43–47% reduction in delays, more than 90% in emission reduction, and a 94% reduction in traffic crashes compared to the other tested measures. Conversely, replacing on-street parking with pick-up/drop-off stations may have a less significant impact due to increased stop-and-go events when vehicles pick-up and drop-off passengers, resulting in more interruptions in the flow and increased delays. The paper provides examples of interventions that can be implemented for on-street parking during a CCAM era, along with their expected impacts in order for regional decision-makers and local authorities to draw relative policies. By replacing on-street parking with more efficient traffic measures, cities can significantly improve mobility, reduce emissions, and enhance safety.","PeriodicalId":12079,"journal":{"name":"European Transport Research Review","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How can on-street parking regulations affect traffic, safety, and the environment in a cooperative, connected, and automated era?\",\"authors\":\"Hua Sha, Rajae Haouari, Mohit Kumar Singh, Evita Papazikou, Mohammed Quddus, Amna Chaudhry, Pete Thomas, Andrew Morris\",\"doi\":\"10.1186/s12544-023-00628-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-street parking is a commonly used form of parking facility as part of transportation infrastructure. However, the emergence of connected and autonomous vehicles (CAVs) is expected to significantly impact parking in the future. This study aims to investigate the impacts of on-street parking regulations for CAVs on the environment, safety and mobility in mixed traffic fleets. To achieve this goal, a calibrated and validated network model of the city of Leicester, UK, was selected to test the implementation of CAVs under various deployment scenarios. The results revealed that replacing on-street parking with driving lanes, cycle lanes, and public spaces can lead to better traffic performance. Specifically, there could be a 27–30% reduction in travel time, a 43–47% reduction in delays, more than 90% in emission reduction, and a 94% reduction in traffic crashes compared to the other tested measures. Conversely, replacing on-street parking with pick-up/drop-off stations may have a less significant impact due to increased stop-and-go events when vehicles pick-up and drop-off passengers, resulting in more interruptions in the flow and increased delays. The paper provides examples of interventions that can be implemented for on-street parking during a CCAM era, along with their expected impacts in order for regional decision-makers and local authorities to draw relative policies. By replacing on-street parking with more efficient traffic measures, cities can significantly improve mobility, reduce emissions, and enhance safety.\",\"PeriodicalId\":12079,\"journal\":{\"name\":\"European Transport Research Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Transport Research Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12544-023-00628-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Transport Research Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12544-023-00628-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
How can on-street parking regulations affect traffic, safety, and the environment in a cooperative, connected, and automated era?
On-street parking is a commonly used form of parking facility as part of transportation infrastructure. However, the emergence of connected and autonomous vehicles (CAVs) is expected to significantly impact parking in the future. This study aims to investigate the impacts of on-street parking regulations for CAVs on the environment, safety and mobility in mixed traffic fleets. To achieve this goal, a calibrated and validated network model of the city of Leicester, UK, was selected to test the implementation of CAVs under various deployment scenarios. The results revealed that replacing on-street parking with driving lanes, cycle lanes, and public spaces can lead to better traffic performance. Specifically, there could be a 27–30% reduction in travel time, a 43–47% reduction in delays, more than 90% in emission reduction, and a 94% reduction in traffic crashes compared to the other tested measures. Conversely, replacing on-street parking with pick-up/drop-off stations may have a less significant impact due to increased stop-and-go events when vehicles pick-up and drop-off passengers, resulting in more interruptions in the flow and increased delays. The paper provides examples of interventions that can be implemented for on-street parking during a CCAM era, along with their expected impacts in order for regional decision-makers and local authorities to draw relative policies. By replacing on-street parking with more efficient traffic measures, cities can significantly improve mobility, reduce emissions, and enhance safety.
期刊介绍:
European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an authoritative forum for the dissemination and critical discussion of new ideas and methodologies that originate in, or are of special interest to, the European transport research community. The journal is unique in its field, as it covers all modes of transport and addresses both the engineering and the social science perspective, offering a truly multidisciplinary platform for researchers, practitioners, engineers and policymakers. ETRR is aimed at a readership including researchers, practitioners in the design and operation of transportation systems, and policymakers at the international, national, regional and local levels.