{"title":"利用回溯式和前瞻式转换器使顺序推荐多样化","authors":"Chaoyu Shi, Pengjie Ren, Dongjie Fu, Xin Xin, Shansong Yang, Fei Cai, Zhaochun Ren, Zhumin Chen","doi":"10.1145/3653016","DOIUrl":null,"url":null,"abstract":"<p>Previous studies on sequential recommendation (SR) have predominantly concentrated on optimizing recommendation accuracy. However, there remains a significant gap in enhancing recommendation diversity, particularly for short interaction sequences. The limited availability of interaction information in short sequences hampers the recommender’s ability to comprehensively model users’ intents, consequently affecting both the diversity and accuracy of recommendation. In light of the above challenge, we propose <i>reTrospective and pRospective Transformers for dIversified sEquential Recommendation</i> (TRIER). The TRIER addresses the issue of insufficient information in short interaction sequences by first retrospectively learning to predict users’ potential historical interactions, thereby introducing additional information and expanding short interaction sequences, and then capturing users’ potential intents from multiple augmented sequences. Finally, the TRIER learns to generate diverse recommendation lists by covering as many potential intents as possible. </p><p>To evaluate the effectiveness of TRIER, we conduct extensive experiments on three benchmark datasets. The experimental results demonstrate that TRIER significantly outperforms state-of-the-art methods, exhibiting diversity improvement of up to 11.36% in terms of intra-list distance (ILD@5) on the Steam dataset, 3.43% ILD@5 on the Yelp dataset and 3.77% in terms of category coverage (CC@5) on the Beauty dataset. As for accuracy, on the Yelp dataset, we observe notable improvement of 7.62% and 8.63% in HR@5 and NDCG@5, respectively. Moreover, we found that TRIER reveals more significant accuracy and diversity improvement for short interaction sequences.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversifying Sequential Recommendation with Retrospective and Prospective Transformers\",\"authors\":\"Chaoyu Shi, Pengjie Ren, Dongjie Fu, Xin Xin, Shansong Yang, Fei Cai, Zhaochun Ren, Zhumin Chen\",\"doi\":\"10.1145/3653016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies on sequential recommendation (SR) have predominantly concentrated on optimizing recommendation accuracy. However, there remains a significant gap in enhancing recommendation diversity, particularly for short interaction sequences. The limited availability of interaction information in short sequences hampers the recommender’s ability to comprehensively model users’ intents, consequently affecting both the diversity and accuracy of recommendation. In light of the above challenge, we propose <i>reTrospective and pRospective Transformers for dIversified sEquential Recommendation</i> (TRIER). The TRIER addresses the issue of insufficient information in short interaction sequences by first retrospectively learning to predict users’ potential historical interactions, thereby introducing additional information and expanding short interaction sequences, and then capturing users’ potential intents from multiple augmented sequences. Finally, the TRIER learns to generate diverse recommendation lists by covering as many potential intents as possible. </p><p>To evaluate the effectiveness of TRIER, we conduct extensive experiments on three benchmark datasets. The experimental results demonstrate that TRIER significantly outperforms state-of-the-art methods, exhibiting diversity improvement of up to 11.36% in terms of intra-list distance (ILD@5) on the Steam dataset, 3.43% ILD@5 on the Yelp dataset and 3.77% in terms of category coverage (CC@5) on the Beauty dataset. As for accuracy, on the Yelp dataset, we observe notable improvement of 7.62% and 8.63% in HR@5 and NDCG@5, respectively. Moreover, we found that TRIER reveals more significant accuracy and diversity improvement for short interaction sequences.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653016\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653016","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Diversifying Sequential Recommendation with Retrospective and Prospective Transformers
Previous studies on sequential recommendation (SR) have predominantly concentrated on optimizing recommendation accuracy. However, there remains a significant gap in enhancing recommendation diversity, particularly for short interaction sequences. The limited availability of interaction information in short sequences hampers the recommender’s ability to comprehensively model users’ intents, consequently affecting both the diversity and accuracy of recommendation. In light of the above challenge, we propose reTrospective and pRospective Transformers for dIversified sEquential Recommendation (TRIER). The TRIER addresses the issue of insufficient information in short interaction sequences by first retrospectively learning to predict users’ potential historical interactions, thereby introducing additional information and expanding short interaction sequences, and then capturing users’ potential intents from multiple augmented sequences. Finally, the TRIER learns to generate diverse recommendation lists by covering as many potential intents as possible.
To evaluate the effectiveness of TRIER, we conduct extensive experiments on three benchmark datasets. The experimental results demonstrate that TRIER significantly outperforms state-of-the-art methods, exhibiting diversity improvement of up to 11.36% in terms of intra-list distance (ILD@5) on the Steam dataset, 3.43% ILD@5 on the Yelp dataset and 3.77% in terms of category coverage (CC@5) on the Beauty dataset. As for accuracy, on the Yelp dataset, we observe notable improvement of 7.62% and 8.63% in HR@5 and NDCG@5, respectively. Moreover, we found that TRIER reveals more significant accuracy and diversity improvement for short interaction sequences.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.