利用区域引导运动推理进行卡通动画外绘

Huisi Wu;Hao Meng;Chengze Li;Xueting Liu;Zhenkun Wen;Tong-Yee Lee
{"title":"利用区域引导运动推理进行卡通动画外绘","authors":"Huisi Wu;Hao Meng;Chengze Li;Xueting Liu;Zhenkun Wen;Tong-Yee Lee","doi":"10.1109/TVCG.2024.3379125","DOIUrl":null,"url":null,"abstract":"Cartoon animation video is a popular visual entertainment form worldwide, however many classic animations were produced in a 4:3 aspect ratio that is incompatible with modern widescreen displays. Existing methods like cropping lead to information loss while retargeting causes distortion. Animation companies still rely on manual labor to renovate classic cartoon animations, which is tedious and labor-intensive, but can yield higher-quality videos. Conventional extrapolation or inpainting methods tailored for natural videos struggle with cartoon animations due to the lack of textures in anime, which affects the motion estimation of the objects. In this article, we propose a novel framework designed to automatically outpaint 4:3 anime to 16:9 via region-guided motion inference. Our core concept is to identify the motion correspondences between frames within a sequence in order to reconstruct missing pixels. Initially, we estimate optical flow guided by region information to address challenges posed by exaggerated movements and solid-color regions in cartoon animations. Subsequently, frames are stitched to produce a pre-filled guide frame, offering structural clues for the extension of optical flow maps. Finally, a voting and fusion scheme utilizes learned fusion weights to blend the aligned neighboring reference frames, resulting in the final outpainting frame. Extensive experiments confirm the superiority of our approach over existing methods.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 4","pages":"2086-2100"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartoon Animation Outpainting With Region-Guided Motion Inference\",\"authors\":\"Huisi Wu;Hao Meng;Chengze Li;Xueting Liu;Zhenkun Wen;Tong-Yee Lee\",\"doi\":\"10.1109/TVCG.2024.3379125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cartoon animation video is a popular visual entertainment form worldwide, however many classic animations were produced in a 4:3 aspect ratio that is incompatible with modern widescreen displays. Existing methods like cropping lead to information loss while retargeting causes distortion. Animation companies still rely on manual labor to renovate classic cartoon animations, which is tedious and labor-intensive, but can yield higher-quality videos. Conventional extrapolation or inpainting methods tailored for natural videos struggle with cartoon animations due to the lack of textures in anime, which affects the motion estimation of the objects. In this article, we propose a novel framework designed to automatically outpaint 4:3 anime to 16:9 via region-guided motion inference. Our core concept is to identify the motion correspondences between frames within a sequence in order to reconstruct missing pixels. Initially, we estimate optical flow guided by region information to address challenges posed by exaggerated movements and solid-color regions in cartoon animations. Subsequently, frames are stitched to produce a pre-filled guide frame, offering structural clues for the extension of optical flow maps. Finally, a voting and fusion scheme utilizes learned fusion weights to blend the aligned neighboring reference frames, resulting in the final outpainting frame. Extensive experiments confirm the superiority of our approach over existing methods.\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"31 4\",\"pages\":\"2086-2100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10475578/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10475578/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartoon Animation Outpainting With Region-Guided Motion Inference
Cartoon animation video is a popular visual entertainment form worldwide, however many classic animations were produced in a 4:3 aspect ratio that is incompatible with modern widescreen displays. Existing methods like cropping lead to information loss while retargeting causes distortion. Animation companies still rely on manual labor to renovate classic cartoon animations, which is tedious and labor-intensive, but can yield higher-quality videos. Conventional extrapolation or inpainting methods tailored for natural videos struggle with cartoon animations due to the lack of textures in anime, which affects the motion estimation of the objects. In this article, we propose a novel framework designed to automatically outpaint 4:3 anime to 16:9 via region-guided motion inference. Our core concept is to identify the motion correspondences between frames within a sequence in order to reconstruct missing pixels. Initially, we estimate optical flow guided by region information to address challenges posed by exaggerated movements and solid-color regions in cartoon animations. Subsequently, frames are stitched to produce a pre-filled guide frame, offering structural clues for the extension of optical flow maps. Finally, a voting and fusion scheme utilizes learned fusion weights to blend the aligned neighboring reference frames, resulting in the final outpainting frame. Extensive experiments confirm the superiority of our approach over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信