{"title":"识别面板数据中的潜在群体结构classifylasso 命令","authors":"Wenxin Huang, Yiru Wang, Lingyun Zhou","doi":"10.1177/1536867x241233642","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new command, classifylasso, that implements the classifier-lasso method (Su, Shi, and Phillips, 2016, Econometrica 84: 2215–2264) to simultaneously identify and estimate unobserved parameter heterogeneity in panel-data models using penalized techniques. We document the functionality of this command, including 1) penalized least-squares estimation of group-specific coefficients and classification of unknown group membership under a certain number of groups; 2) two lasso-type estimators with robust standard errors, namely, classifier-lasso and postlasso; and 3) determination of the number of groups based on an information criterion. We further develop some postestimation commands to display and visualize the estimation results.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identify latent group structures in panel data: The classifylasso command\",\"authors\":\"Wenxin Huang, Yiru Wang, Lingyun Zhou\",\"doi\":\"10.1177/1536867x241233642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a new command, classifylasso, that implements the classifier-lasso method (Su, Shi, and Phillips, 2016, Econometrica 84: 2215–2264) to simultaneously identify and estimate unobserved parameter heterogeneity in panel-data models using penalized techniques. We document the functionality of this command, including 1) penalized least-squares estimation of group-specific coefficients and classification of unknown group membership under a certain number of groups; 2) two lasso-type estimators with robust standard errors, namely, classifier-lasso and postlasso; and 3) determination of the number of groups based on an information criterion. We further develop some postestimation commands to display and visualize the estimation results.\",\"PeriodicalId\":501101,\"journal\":{\"name\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x241233642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241233642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们介绍了一个新命令 classifylasso,它实现了分类器-拉索方法(Su, Shi, and Phillips, 2016, Econometrica 84: 2215-2264),利用惩罚技术同时识别和估计面板数据模型中未观察到的参数异质性。我们记录了这一命令的功能,包括:1)对特定组系数进行惩罚性最小二乘估计,并对一定组数下的未知组成员进行分类;2)两个具有稳健标准误差的拉索型估计器,即分类器-拉索(classifier-lasso)和后拉索(post-lasso);3)基于信息标准确定组数。我们进一步开发了一些后估计命令来显示和可视化估计结果。
Identify latent group structures in panel data: The classifylasso command
In this article, we introduce a new command, classifylasso, that implements the classifier-lasso method (Su, Shi, and Phillips, 2016, Econometrica 84: 2215–2264) to simultaneously identify and estimate unobserved parameter heterogeneity in panel-data models using penalized techniques. We document the functionality of this command, including 1) penalized least-squares estimation of group-specific coefficients and classification of unknown group membership under a certain number of groups; 2) two lasso-type estimators with robust standard errors, namely, classifier-lasso and postlasso; and 3) determination of the number of groups based on an information criterion. We further develop some postestimation commands to display and visualize the estimation results.